Metamath Proof Explorer


Theorem fundcmpsurinjlem1

Description: Lemma 1 for fundcmpsurinj . (Contributed by AV, 4-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P=z|xAz=F-1Fx
fundcmpsurinj.g G=xAF-1Fx
Assertion fundcmpsurinjlem1 ranG=P

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P=z|xAz=F-1Fx
2 fundcmpsurinj.g G=xAF-1Fx
3 2 rnmpt ranG=z|xAz=F-1Fx
4 3 1 eqtr4i ranG=P