Metamath Proof Explorer


Theorem funimaexg

Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of Quine p. 284. Compare Exercise 9 of TakeutiZaring p. 29. (Contributed by NM, 10-Sep-2006) Shorten proof and avoid ax-10 , ax-12 . (Revised by SN, 19-Dec-2024)

Ref Expression
Assertion funimaexg FunABCABV

Proof

Step Hyp Ref Expression
1 dffun6 FunARelAx*yxAy
2 1 simprbi FunAx*yxAy
3 dfima2 AB=y|xBxAy
4 axrep6g BCx*yxAyy|xBxAyV
5 3 4 eqeltrid BCx*yxAyABV
6 2 5 sylan2 BCFunAABV
7 6 ancoms FunABCABV