Metamath Proof Explorer


Theorem funimass2

Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004)

Ref Expression
Assertion funimass2 FunFAF-1BFAB

Proof

Step Hyp Ref Expression
1 funimacnv FunFFF-1B=BranF
2 1 sseq2d FunFFAFF-1BFABranF
3 inss1 BranFB
4 sstr2 FABranFBranFBFAB
5 3 4 mpi FABranFFAB
6 2 5 syl6bi FunFFAFF-1BFAB
7 imass2 AF-1BFAFF-1B
8 6 7 impel FunFAF-1BFAB