Metamath Proof Explorer


Theorem funopafv2b

Description: Equivalence of function value and ordered pair membership, analogous to funopfvb . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion funopafv2b FunFAdomFF''''A=BABF

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 fnopafv2b FFndomFAdomFF''''A=BABF
3 1 2 sylanb FunFAdomFF''''A=BABF