Metamath Proof Explorer


Theorem funopafv2b

Description: Equivalence of function value and ordered pair membership, analogous to funopfvb . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion funopafv2b Fun F A dom F F '''' A = B A B F

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 fnopafv2b F Fn dom F A dom F F '''' A = B A B F
3 1 2 sylanb Fun F A dom F F '''' A = B A B F