Metamath Proof Explorer


Theorem funopafv2b

Description: Equivalence of function value and ordered pair membership, analogous to funopfvb . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion funopafv2b ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 '''' 𝐴 ) = 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
2 fnopafv2b ( ( 𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 '''' 𝐴 ) = 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) )
3 1 2 sylanb ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 '''' 𝐴 ) = 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) )