Metamath Proof Explorer


Theorem fv2prop

Description: The function value of unordered pair of ordered pairs with first components 1 and 2 at 1. (Contributed by AV, 4-Feb-2023)

Ref Expression
Assertion fv2prop BV1A2B2=B

Proof

Step Hyp Ref Expression
1 2ex 2V
2 1ne2 12
3 fvpr2g 2VBV121A2B2=B
4 1 2 3 mp3an13 BV1A2B2=B