Metamath Proof Explorer


Theorem submuladdmuld

Description: Transformation of a sum of a product of a difference and a product with the subtrahend of the difference. (Contributed by AV, 2-Feb-2023)

Ref Expression
Hypotheses submuladdmuld.a φA
submuladdmuld.b φB
submuladdmuld.c φC
submuladdmuld.d φD
Assertion submuladdmuld φABC+BD=AC+BDC

Proof

Step Hyp Ref Expression
1 submuladdmuld.a φA
2 submuladdmuld.b φB
3 submuladdmuld.c φC
4 submuladdmuld.d φD
5 1 2 3 subdird φABC=ACBC
6 5 oveq1d φABC+BD=AC-BC+BD
7 1 3 mulcld φAC
8 2 3 mulcld φBC
9 2 4 mulcld φBD
10 7 8 9 subadd23d φAC-BC+BD=AC+BD-BC
11 2 4 3 subdid φBDC=BDBC
12 11 eqcomd φBDBC=BDC
13 12 oveq2d φAC+BD-BC=AC+BDC
14 6 10 13 3eqtrd φABC+BD=AC+BDC