Description: Transformation of a sum of a product of a difference and a product with the subtrahend of the difference. (Contributed by AV, 2-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | submuladdmuld.a | |
|
submuladdmuld.b | |
||
submuladdmuld.c | |
||
submuladdmuld.d | |
||
Assertion | submuladdmuld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submuladdmuld.a | |
|
2 | submuladdmuld.b | |
|
3 | submuladdmuld.c | |
|
4 | submuladdmuld.d | |
|
5 | 1 2 3 | subdird | |
6 | 5 | oveq1d | |
7 | 1 3 | mulcld | |
8 | 2 3 | mulcld | |
9 | 2 4 | mulcld | |
10 | 7 8 9 | subadd23d | |
11 | 2 4 3 | subdid | |
12 | 11 | eqcomd | |
13 | 12 | oveq2d | |
14 | 6 10 13 | 3eqtrd | |