Metamath Proof Explorer


Theorem submuladdmuld

Description: Transformation of a sum of a product of a difference and a product with the subtrahend of the difference. (Contributed by AV, 2-Feb-2023)

Ref Expression
Hypotheses submuladdmuld.a
|- ( ph -> A e. CC )
submuladdmuld.b
|- ( ph -> B e. CC )
submuladdmuld.c
|- ( ph -> C e. CC )
submuladdmuld.d
|- ( ph -> D e. CC )
Assertion submuladdmuld
|- ( ph -> ( ( ( A - B ) x. C ) + ( B x. D ) ) = ( ( A x. C ) + ( B x. ( D - C ) ) ) )

Proof

Step Hyp Ref Expression
1 submuladdmuld.a
 |-  ( ph -> A e. CC )
2 submuladdmuld.b
 |-  ( ph -> B e. CC )
3 submuladdmuld.c
 |-  ( ph -> C e. CC )
4 submuladdmuld.d
 |-  ( ph -> D e. CC )
5 1 2 3 subdird
 |-  ( ph -> ( ( A - B ) x. C ) = ( ( A x. C ) - ( B x. C ) ) )
6 5 oveq1d
 |-  ( ph -> ( ( ( A - B ) x. C ) + ( B x. D ) ) = ( ( ( A x. C ) - ( B x. C ) ) + ( B x. D ) ) )
7 1 3 mulcld
 |-  ( ph -> ( A x. C ) e. CC )
8 2 3 mulcld
 |-  ( ph -> ( B x. C ) e. CC )
9 2 4 mulcld
 |-  ( ph -> ( B x. D ) e. CC )
10 7 8 9 subadd23d
 |-  ( ph -> ( ( ( A x. C ) - ( B x. C ) ) + ( B x. D ) ) = ( ( A x. C ) + ( ( B x. D ) - ( B x. C ) ) ) )
11 2 4 3 subdid
 |-  ( ph -> ( B x. ( D - C ) ) = ( ( B x. D ) - ( B x. C ) ) )
12 11 eqcomd
 |-  ( ph -> ( ( B x. D ) - ( B x. C ) ) = ( B x. ( D - C ) ) )
13 12 oveq2d
 |-  ( ph -> ( ( A x. C ) + ( ( B x. D ) - ( B x. C ) ) ) = ( ( A x. C ) + ( B x. ( D - C ) ) ) )
14 6 10 13 3eqtrd
 |-  ( ph -> ( ( ( A - B ) x. C ) + ( B x. D ) ) = ( ( A x. C ) + ( B x. ( D - C ) ) ) )