| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submuladdmuld.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | submuladdmuld.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | submuladdmuld.c |  |-  ( ph -> C e. CC ) | 
						
							| 4 |  | submuladdmuld.d |  |-  ( ph -> D e. CC ) | 
						
							| 5 | 1 2 3 | subdird |  |-  ( ph -> ( ( A - B ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( ph -> ( ( ( A - B ) x. C ) + ( B x. D ) ) = ( ( ( A x. C ) - ( B x. C ) ) + ( B x. D ) ) ) | 
						
							| 7 | 1 3 | mulcld |  |-  ( ph -> ( A x. C ) e. CC ) | 
						
							| 8 | 2 3 | mulcld |  |-  ( ph -> ( B x. C ) e. CC ) | 
						
							| 9 | 2 4 | mulcld |  |-  ( ph -> ( B x. D ) e. CC ) | 
						
							| 10 | 7 8 9 | subadd23d |  |-  ( ph -> ( ( ( A x. C ) - ( B x. C ) ) + ( B x. D ) ) = ( ( A x. C ) + ( ( B x. D ) - ( B x. C ) ) ) ) | 
						
							| 11 | 2 4 3 | subdid |  |-  ( ph -> ( B x. ( D - C ) ) = ( ( B x. D ) - ( B x. C ) ) ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ph -> ( ( B x. D ) - ( B x. C ) ) = ( B x. ( D - C ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( ph -> ( ( A x. C ) + ( ( B x. D ) - ( B x. C ) ) ) = ( ( A x. C ) + ( B x. ( D - C ) ) ) ) | 
						
							| 14 | 6 10 13 | 3eqtrd |  |-  ( ph -> ( ( ( A - B ) x. C ) + ( B x. D ) ) = ( ( A x. C ) + ( B x. ( D - C ) ) ) ) |