| Step | Hyp | Ref | Expression | 
						
							| 1 |  | affinecomb1.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | affinecomb1.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | affinecomb1.c |  |-  ( ph -> C e. RR ) | 
						
							| 4 |  | affinecomb1.d |  |-  ( ph -> B =/= C ) | 
						
							| 5 |  | affinecomb1.e |  |-  ( ph -> E e. RR ) | 
						
							| 6 |  | affinecomb1.f |  |-  ( ph -> F e. RR ) | 
						
							| 7 |  | affinecomb1.g |  |-  ( ph -> G e. RR ) | 
						
							| 8 |  | affinecomb1.s |  |-  S = ( ( G - F ) / ( C - B ) ) | 
						
							| 9 | 1 | adantr |  |-  ( ( ph /\ t e. RR ) -> A e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( ph /\ t e. RR ) -> A e. CC ) | 
						
							| 11 | 2 | adantr |  |-  ( ( ph /\ t e. RR ) -> B e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( ( ph /\ t e. RR ) -> B e. CC ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ t e. RR ) -> C e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( ( ph /\ t e. RR ) -> C e. CC ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ t e. RR ) -> t e. RR ) | 
						
							| 16 | 15 | recnd |  |-  ( ( ph /\ t e. RR ) -> t e. CC ) | 
						
							| 17 | 4 | adantr |  |-  ( ( ph /\ t e. RR ) -> B =/= C ) | 
						
							| 18 | 10 12 14 16 17 | affineequivne |  |-  ( ( ph /\ t e. RR ) -> ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) <-> t = ( ( A - B ) / ( C - B ) ) ) ) | 
						
							| 19 |  | oveq2 |  |-  ( t = ( ( A - B ) / ( C - B ) ) -> ( 1 - t ) = ( 1 - ( ( A - B ) / ( C - B ) ) ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( t = ( ( A - B ) / ( C - B ) ) -> ( ( 1 - t ) x. F ) = ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) ) | 
						
							| 21 |  | oveq1 |  |-  ( t = ( ( A - B ) / ( C - B ) ) -> ( t x. G ) = ( ( ( A - B ) / ( C - B ) ) x. G ) ) | 
						
							| 22 | 20 21 | oveq12d |  |-  ( t = ( ( A - B ) / ( C - B ) ) -> ( ( ( 1 - t ) x. F ) + ( t x. G ) ) = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) ) | 
						
							| 23 | 22 | eqeq2d |  |-  ( t = ( ( A - B ) / ( C - B ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) <-> E = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( ph /\ t e. RR ) /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) <-> E = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) ) ) | 
						
							| 25 |  | eqidd |  |-  ( ph -> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) = ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) ) | 
						
							| 26 | 1 2 | resubcld |  |-  ( ph -> ( A - B ) e. RR ) | 
						
							| 27 | 3 2 | resubcld |  |-  ( ph -> ( C - B ) e. RR ) | 
						
							| 28 | 3 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 29 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 30 | 4 | necomd |  |-  ( ph -> C =/= B ) | 
						
							| 31 | 28 29 30 | subne0d |  |-  ( ph -> ( C - B ) =/= 0 ) | 
						
							| 32 | 26 27 31 | redivcld |  |-  ( ph -> ( ( A - B ) / ( C - B ) ) e. RR ) | 
						
							| 33 | 7 6 | resubcld |  |-  ( ph -> ( G - F ) e. RR ) | 
						
							| 34 | 32 33 | remulcld |  |-  ( ph -> ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) e. RR ) | 
						
							| 35 | 34 6 | readdcld |  |-  ( ph -> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) e. RR ) | 
						
							| 36 | 35 | recnd |  |-  ( ph -> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) e. CC ) | 
						
							| 37 | 6 | recnd |  |-  ( ph -> F e. CC ) | 
						
							| 38 | 7 | recnd |  |-  ( ph -> G e. CC ) | 
						
							| 39 | 32 | recnd |  |-  ( ph -> ( ( A - B ) / ( C - B ) ) e. CC ) | 
						
							| 40 | 36 37 38 39 | affineequiv4 |  |-  ( ph -> ( ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) <-> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) = ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) ) ) | 
						
							| 41 | 25 40 | mpbird |  |-  ( ph -> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) ) | 
						
							| 42 | 26 | recnd |  |-  ( ph -> ( A - B ) e. CC ) | 
						
							| 43 | 27 | recnd |  |-  ( ph -> ( C - B ) e. CC ) | 
						
							| 44 | 33 | recnd |  |-  ( ph -> ( G - F ) e. CC ) | 
						
							| 45 | 42 43 44 31 | div13d |  |-  ( ph -> ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) = ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) | 
						
							| 46 | 8 | oveq1i |  |-  ( S x. ( A - B ) ) = ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) | 
						
							| 47 | 45 46 | eqtr4di |  |-  ( ph -> ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) = ( S x. ( A - B ) ) ) | 
						
							| 48 | 47 | oveq1d |  |-  ( ph -> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) = ( ( S x. ( A - B ) ) + F ) ) | 
						
							| 49 | 41 48 | eqtr3d |  |-  ( ph -> ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) = ( ( S x. ( A - B ) ) + F ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ t e. RR ) -> ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) = ( ( S x. ( A - B ) ) + F ) ) | 
						
							| 51 | 50 | eqeq2d |  |-  ( ( ph /\ t e. RR ) -> ( E = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) <-> E = ( ( S x. ( A - B ) ) + F ) ) ) | 
						
							| 52 | 51 | biimpd |  |-  ( ( ph /\ t e. RR ) -> ( E = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( ph /\ t e. RR ) /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) | 
						
							| 54 | 24 53 | sylbid |  |-  ( ( ( ph /\ t e. RR ) /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) | 
						
							| 55 | 54 | ex |  |-  ( ( ph /\ t e. RR ) -> ( t = ( ( A - B ) / ( C - B ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) ) | 
						
							| 56 | 18 55 | sylbid |  |-  ( ( ph /\ t e. RR ) -> ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) ) | 
						
							| 57 | 56 | impd |  |-  ( ( ph /\ t e. RR ) -> ( ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) | 
						
							| 58 | 57 | rexlimdva |  |-  ( ph -> ( E. t e. RR ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) | 
						
							| 59 | 5 | adantr |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> E e. RR ) | 
						
							| 60 | 59 | recnd |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> E e. CC ) | 
						
							| 61 | 37 | adantr |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> F e. CC ) | 
						
							| 62 | 38 | adantr |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> G e. CC ) | 
						
							| 63 | 32 | adantr |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( ( A - B ) / ( C - B ) ) e. RR ) | 
						
							| 64 |  | eleq1 |  |-  ( t = ( ( A - B ) / ( C - B ) ) -> ( t e. RR <-> ( ( A - B ) / ( C - B ) ) e. RR ) ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( t e. RR <-> ( ( A - B ) / ( C - B ) ) e. RR ) ) | 
						
							| 66 | 63 65 | mpbird |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> t e. RR ) | 
						
							| 67 | 66 | recnd |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> t e. CC ) | 
						
							| 68 | 60 61 62 67 | affineequiv4 |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) <-> E = ( ( t x. ( G - F ) ) + F ) ) ) | 
						
							| 69 | 19 | oveq1d |  |-  ( t = ( ( A - B ) / ( C - B ) ) -> ( ( 1 - t ) x. B ) = ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. B ) ) | 
						
							| 70 |  | oveq1 |  |-  ( t = ( ( A - B ) / ( C - B ) ) -> ( t x. C ) = ( ( ( A - B ) / ( C - B ) ) x. C ) ) | 
						
							| 71 | 69 70 | oveq12d |  |-  ( t = ( ( A - B ) / ( C - B ) ) -> ( ( ( 1 - t ) x. B ) + ( t x. C ) ) = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. B ) + ( ( ( A - B ) / ( C - B ) ) x. C ) ) ) | 
						
							| 72 |  | eqidd |  |-  ( ph -> ( ( A - B ) / ( C - B ) ) = ( ( A - B ) / ( C - B ) ) ) | 
						
							| 73 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 74 | 73 29 28 39 4 | affineequivne |  |-  ( ph -> ( A = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. B ) + ( ( ( A - B ) / ( C - B ) ) x. C ) ) <-> ( ( A - B ) / ( C - B ) ) = ( ( A - B ) / ( C - B ) ) ) ) | 
						
							| 75 | 72 74 | mpbird |  |-  ( ph -> A = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. B ) + ( ( ( A - B ) / ( C - B ) ) x. C ) ) ) | 
						
							| 76 | 75 | eqcomd |  |-  ( ph -> ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. B ) + ( ( ( A - B ) / ( C - B ) ) x. C ) ) = A ) | 
						
							| 77 | 71 76 | sylan9eqr |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( ( ( 1 - t ) x. B ) + ( t x. C ) ) = A ) | 
						
							| 78 | 77 | eqcomd |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) ) | 
						
							| 79 | 78 | biantrurd |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) <-> ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) ) ) | 
						
							| 80 | 45 | adantr |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) = ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) | 
						
							| 81 |  | oveq1 |  |-  ( t = ( ( A - B ) / ( C - B ) ) -> ( t x. ( G - F ) ) = ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( t x. ( G - F ) ) = ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) ) | 
						
							| 83 | 46 | a1i |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( S x. ( A - B ) ) = ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) | 
						
							| 84 | 80 82 83 | 3eqtr4d |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( t x. ( G - F ) ) = ( S x. ( A - B ) ) ) | 
						
							| 85 | 84 | oveq1d |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( ( t x. ( G - F ) ) + F ) = ( ( S x. ( A - B ) ) + F ) ) | 
						
							| 86 | 85 | eqeq2d |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( t x. ( G - F ) ) + F ) <-> E = ( ( S x. ( A - B ) ) + F ) ) ) | 
						
							| 87 | 68 79 86 | 3bitr3d |  |-  ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) <-> E = ( ( S x. ( A - B ) ) + F ) ) ) | 
						
							| 88 | 32 87 | rspcedv |  |-  ( ph -> ( E = ( ( S x. ( A - B ) ) + F ) -> E. t e. RR ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) ) ) | 
						
							| 89 | 58 88 | impbid |  |-  ( ph -> ( E. t e. RR ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) <-> E = ( ( S x. ( A - B ) ) + F ) ) ) |