Metamath Proof Explorer


Theorem affineequiv4

Description: Equivalence between two ways of expressing A as an affine combination of B and C . (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses affineequiv.a
|- ( ph -> A e. CC )
affineequiv.b
|- ( ph -> B e. CC )
affineequiv.c
|- ( ph -> C e. CC )
affineequiv.d
|- ( ph -> D e. CC )
Assertion affineequiv4
|- ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> A = ( ( D x. ( C - B ) ) + B ) ) )

Proof

Step Hyp Ref Expression
1 affineequiv.a
 |-  ( ph -> A e. CC )
2 affineequiv.b
 |-  ( ph -> B e. CC )
3 affineequiv.c
 |-  ( ph -> C e. CC )
4 affineequiv.d
 |-  ( ph -> D e. CC )
5 1 2 3 4 affineequiv3
 |-  ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> ( A - B ) = ( D x. ( C - B ) ) ) )
6 3 2 subcld
 |-  ( ph -> ( C - B ) e. CC )
7 4 6 mulcld
 |-  ( ph -> ( D x. ( C - B ) ) e. CC )
8 1 2 7 subadd2d
 |-  ( ph -> ( ( A - B ) = ( D x. ( C - B ) ) <-> ( ( D x. ( C - B ) ) + B ) = A ) )
9 eqcom
 |-  ( ( ( D x. ( C - B ) ) + B ) = A <-> A = ( ( D x. ( C - B ) ) + B ) )
10 8 9 bitrdi
 |-  ( ph -> ( ( A - B ) = ( D x. ( C - B ) ) <-> A = ( ( D x. ( C - B ) ) + B ) ) )
11 5 10 bitrd
 |-  ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> A = ( ( D x. ( C - B ) ) + B ) ) )