| Step |
Hyp |
Ref |
Expression |
| 1 |
|
affineequiv.a |
|- ( ph -> A e. CC ) |
| 2 |
|
affineequiv.b |
|- ( ph -> B e. CC ) |
| 3 |
|
affineequiv.c |
|- ( ph -> C e. CC ) |
| 4 |
|
affineequiv.d |
|- ( ph -> D e. CC ) |
| 5 |
1 2 3 4
|
affineequiv3 |
|- ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> ( A - B ) = ( D x. ( C - B ) ) ) ) |
| 6 |
3 2
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
| 7 |
4 6
|
mulcld |
|- ( ph -> ( D x. ( C - B ) ) e. CC ) |
| 8 |
1 2 7
|
subadd2d |
|- ( ph -> ( ( A - B ) = ( D x. ( C - B ) ) <-> ( ( D x. ( C - B ) ) + B ) = A ) ) |
| 9 |
|
eqcom |
|- ( ( ( D x. ( C - B ) ) + B ) = A <-> A = ( ( D x. ( C - B ) ) + B ) ) |
| 10 |
8 9
|
bitrdi |
|- ( ph -> ( ( A - B ) = ( D x. ( C - B ) ) <-> A = ( ( D x. ( C - B ) ) + B ) ) ) |
| 11 |
5 10
|
bitrd |
|- ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> A = ( ( D x. ( C - B ) ) + B ) ) ) |