| Step |
Hyp |
Ref |
Expression |
| 1 |
|
affineequiv.a |
|- ( ph -> A e. CC ) |
| 2 |
|
affineequiv.b |
|- ( ph -> B e. CC ) |
| 3 |
|
affineequiv.c |
|- ( ph -> C e. CC ) |
| 4 |
|
affineequiv.d |
|- ( ph -> D e. CC ) |
| 5 |
|
affineequivne.d |
|- ( ph -> B =/= C ) |
| 6 |
1 2 3 4
|
affineequiv3 |
|- ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> ( A - B ) = ( D x. ( C - B ) ) ) ) |
| 7 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 8 |
3 2
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
| 9 |
5
|
necomd |
|- ( ph -> C =/= B ) |
| 10 |
3 2 9
|
subne0d |
|- ( ph -> ( C - B ) =/= 0 ) |
| 11 |
7 4 8 10
|
divmul3d |
|- ( ph -> ( ( ( A - B ) / ( C - B ) ) = D <-> ( A - B ) = ( D x. ( C - B ) ) ) ) |
| 12 |
|
eqcom |
|- ( ( ( A - B ) / ( C - B ) ) = D <-> D = ( ( A - B ) / ( C - B ) ) ) |
| 13 |
11 12
|
bitr3di |
|- ( ph -> ( ( A - B ) = ( D x. ( C - B ) ) <-> D = ( ( A - B ) / ( C - B ) ) ) ) |
| 14 |
6 13
|
bitrd |
|- ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> D = ( ( A - B ) / ( C - B ) ) ) ) |