Metamath Proof Explorer


Theorem affineequivne

Description: Equivalence between two ways of expressing A as an affine combination of B and C if B and C are not equal. (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses affineequiv.a
|- ( ph -> A e. CC )
affineequiv.b
|- ( ph -> B e. CC )
affineequiv.c
|- ( ph -> C e. CC )
affineequiv.d
|- ( ph -> D e. CC )
affineequivne.d
|- ( ph -> B =/= C )
Assertion affineequivne
|- ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> D = ( ( A - B ) / ( C - B ) ) ) )

Proof

Step Hyp Ref Expression
1 affineequiv.a
 |-  ( ph -> A e. CC )
2 affineequiv.b
 |-  ( ph -> B e. CC )
3 affineequiv.c
 |-  ( ph -> C e. CC )
4 affineequiv.d
 |-  ( ph -> D e. CC )
5 affineequivne.d
 |-  ( ph -> B =/= C )
6 1 2 3 4 affineequiv3
 |-  ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> ( A - B ) = ( D x. ( C - B ) ) ) )
7 1 2 subcld
 |-  ( ph -> ( A - B ) e. CC )
8 3 2 subcld
 |-  ( ph -> ( C - B ) e. CC )
9 5 necomd
 |-  ( ph -> C =/= B )
10 3 2 9 subne0d
 |-  ( ph -> ( C - B ) =/= 0 )
11 7 4 8 10 divmul3d
 |-  ( ph -> ( ( ( A - B ) / ( C - B ) ) = D <-> ( A - B ) = ( D x. ( C - B ) ) ) )
12 eqcom
 |-  ( ( ( A - B ) / ( C - B ) ) = D <-> D = ( ( A - B ) / ( C - B ) ) )
13 11 12 bitr3di
 |-  ( ph -> ( ( A - B ) = ( D x. ( C - B ) ) <-> D = ( ( A - B ) / ( C - B ) ) ) )
14 6 13 bitrd
 |-  ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> D = ( ( A - B ) / ( C - B ) ) ) )