Step |
Hyp |
Ref |
Expression |
1 |
|
affineequiv.a |
|- ( ph -> A e. CC ) |
2 |
|
affineequiv.b |
|- ( ph -> B e. CC ) |
3 |
|
affineequiv.c |
|- ( ph -> C e. CC ) |
4 |
|
affineequiv.d |
|- ( ph -> D e. CC ) |
5 |
|
affineequivne.d |
|- ( ph -> B =/= C ) |
6 |
1 2 3 4
|
affineequiv3 |
|- ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> ( A - B ) = ( D x. ( C - B ) ) ) ) |
7 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
8 |
3 2
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
9 |
5
|
necomd |
|- ( ph -> C =/= B ) |
10 |
3 2 9
|
subne0d |
|- ( ph -> ( C - B ) =/= 0 ) |
11 |
7 4 8 10
|
divmul3d |
|- ( ph -> ( ( ( A - B ) / ( C - B ) ) = D <-> ( A - B ) = ( D x. ( C - B ) ) ) ) |
12 |
|
eqcom |
|- ( ( ( A - B ) / ( C - B ) ) = D <-> D = ( ( A - B ) / ( C - B ) ) ) |
13 |
11 12
|
bitr3di |
|- ( ph -> ( ( A - B ) = ( D x. ( C - B ) ) <-> D = ( ( A - B ) / ( C - B ) ) ) ) |
14 |
6 13
|
bitrd |
|- ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> D = ( ( A - B ) / ( C - B ) ) ) ) |