Metamath Proof Explorer


Theorem affineequivne

Description: Equivalence between two ways of expressing A as an affine combination of B and C if B and C are not equal. (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses affineequiv.a φ A
affineequiv.b φ B
affineequiv.c φ C
affineequiv.d φ D
affineequivne.d φ B C
Assertion affineequivne φ A = 1 D B + D C D = A B C B

Proof

Step Hyp Ref Expression
1 affineequiv.a φ A
2 affineequiv.b φ B
3 affineequiv.c φ C
4 affineequiv.d φ D
5 affineequivne.d φ B C
6 1 2 3 4 affineequiv3 φ A = 1 D B + D C A B = D C B
7 1 2 subcld φ A B
8 3 2 subcld φ C B
9 5 necomd φ C B
10 3 2 9 subne0d φ C B 0
11 7 4 8 10 divmul3d φ A B C B = D A B = D C B
12 eqcom A B C B = D D = A B C B
13 11 12 bitr3di φ A B = D C B D = A B C B
14 6 13 bitrd φ A = 1 D B + D C D = A B C B