| Step |
Hyp |
Ref |
Expression |
| 1 |
|
angpieqvdlem.A |
|
| 2 |
|
angpieqvdlem.B |
|
| 3 |
|
angpieqvdlem.C |
|
| 4 |
|
angpieqvdlem.AneB |
|
| 5 |
|
angpieqvdlem.AneC |
|
| 6 |
3 2
|
subcld |
|
| 7 |
1 2
|
subcld |
|
| 8 |
1 2 4
|
subne0d |
|
| 9 |
6 7 8
|
divcld |
|
| 10 |
9
|
negcld |
|
| 11 |
|
1cnd |
|
| 12 |
5
|
necomd |
|
| 13 |
3 1 2 12
|
subneintr2d |
|
| 14 |
6 7 8 13
|
divne1d |
|
| 15 |
9 11 14
|
negned |
|
| 16 |
10 15
|
xov1plusxeqvd |
|
| 17 |
6 7 8
|
divnegd |
|
| 18 |
3 2
|
negsubdi2d |
|
| 19 |
18
|
oveq1d |
|
| 20 |
17 19
|
eqtrd |
|
| 21 |
7 8
|
dividd |
|
| 22 |
21
|
oveq1d |
|
| 23 |
7 6 7 8
|
divsubdird |
|
| 24 |
11 9
|
negsubd |
|
| 25 |
22 23 24
|
3eqtr4rd |
|
| 26 |
1 3 2
|
nnncan2d |
|
| 27 |
26
|
oveq1d |
|
| 28 |
25 27
|
eqtrd |
|
| 29 |
20 28
|
oveq12d |
|
| 30 |
2 3
|
subcld |
|
| 31 |
1 3
|
subcld |
|
| 32 |
1 3 5
|
subne0d |
|
| 33 |
30 31 7 32 8
|
divcan7d |
|
| 34 |
2 3 1 3 5
|
div2subd |
|
| 35 |
29 33 34
|
3eqtrrd |
|
| 36 |
35
|
eleq1d |
|
| 37 |
16 36
|
bitr4d |
|