| Step |
Hyp |
Ref |
Expression |
| 1 |
|
angpieqvd.angdef |
|
| 2 |
|
angpieqvd.A |
|
| 3 |
|
angpieqvd.B |
|
| 4 |
|
angpieqvd.C |
|
| 5 |
|
angpieqvd.AneB |
|
| 6 |
|
angpieqvd.BneC |
|
| 7 |
1 2 3 4 5 6
|
angpieqvdlem2 |
|
| 8 |
7
|
biimpar |
|
| 9 |
2
|
adantr |
|
| 10 |
3
|
adantr |
|
| 11 |
4
|
adantr |
|
| 12 |
5
|
adantr |
|
| 13 |
1 2 3 4 5 6
|
angpined |
|
| 14 |
13
|
imp |
|
| 15 |
9 10 11 12 14
|
angpieqvdlem |
|
| 16 |
8 15
|
mpbid |
|
| 17 |
4 3
|
subcld |
|
| 18 |
17
|
adantr |
|
| 19 |
4 2
|
subcld |
|
| 20 |
19
|
adantr |
|
| 21 |
14
|
necomd |
|
| 22 |
11 9 21
|
subne0d |
|
| 23 |
18 20 22
|
divcan1d |
|
| 24 |
23
|
eqcomd |
|
| 25 |
18 20 22
|
divcld |
|
| 26 |
9 10 11 25
|
affineequiv |
|
| 27 |
24 26
|
mpbird |
|
| 28 |
|
oveq1 |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
oveq1d |
|
| 31 |
28 30
|
oveq12d |
|
| 32 |
31
|
rspceeqv |
|
| 33 |
16 27 32
|
syl2anc |
|
| 34 |
33
|
ex |
|
| 35 |
2
|
adantr |
|
| 36 |
3
|
adantr |
|
| 37 |
4
|
adantr |
|
| 38 |
|
simpr |
|
| 39 |
|
elioore |
|
| 40 |
|
recn |
|
| 41 |
38 39 40
|
3syl |
|
| 42 |
35 36 37 41
|
affineequiv |
|
| 43 |
|
simp3 |
|
| 44 |
17
|
3ad2ant1 |
|
| 45 |
41
|
3adant3 |
|
| 46 |
19
|
3ad2ant1 |
|
| 47 |
6
|
necomd |
|
| 48 |
4 3 47
|
subne0d |
|
| 49 |
48
|
3ad2ant1 |
|
| 50 |
43 49
|
eqnetrrd |
|
| 51 |
45 46 50
|
mulne0bbd |
|
| 52 |
44 45 46 51
|
divmul3d |
|
| 53 |
43 52
|
mpbird |
|
| 54 |
|
simp2 |
|
| 55 |
53 54
|
eqeltrd |
|
| 56 |
2
|
3ad2ant1 |
|
| 57 |
3
|
3ad2ant1 |
|
| 58 |
4
|
3ad2ant1 |
|
| 59 |
5
|
3ad2ant1 |
|
| 60 |
58 56 51
|
subne0ad |
|
| 61 |
60
|
necomd |
|
| 62 |
56 57 58 59 61
|
angpieqvdlem |
|
| 63 |
55 62
|
mpbird |
|
| 64 |
6
|
3ad2ant1 |
|
| 65 |
1 56 57 58 59 64
|
angpieqvdlem2 |
|
| 66 |
63 65
|
mpbid |
|
| 67 |
66
|
3expia |
|
| 68 |
42 67
|
sylbid |
|
| 69 |
68
|
rexlimdva |
|
| 70 |
34 69
|
impbid |
|