Metamath Proof Explorer


Theorem angpined

Description: If the angle at ABC is _pi , then A is not equal to C. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses angpieqvd.angdef F = x 0 , y 0 log y x
angpieqvd.A φ A
angpieqvd.B φ B
angpieqvd.C φ C
angpieqvd.AneB φ A B
angpieqvd.BneC φ B C
Assertion angpined φ A B F C B = π A C

Proof

Step Hyp Ref Expression
1 angpieqvd.angdef F = x 0 , y 0 log y x
2 angpieqvd.A φ A
3 angpieqvd.B φ B
4 angpieqvd.C φ C
5 angpieqvd.AneB φ A B
6 angpieqvd.BneC φ B C
7 1 2 3 4 5 6 angpieqvdlem2 φ C B A B + A B F C B = π
8 1rp 1 +
9 1re 1
10 ax-1ne0 1 0
11 rpneg 1 1 0 1 + ¬ 1 +
12 9 10 11 mp2an 1 + ¬ 1 +
13 8 12 mpbi ¬ 1 +
14 2 3 subcld φ A B
15 14 adantr φ C = A A B
16 2 3 5 subne0d φ A B 0
17 16 adantr φ C = A A B 0
18 simpr φ C = A C = A
19 18 oveq1d φ C = A C B = A B
20 15 17 19 diveq1bd φ C = A C B A B = 1
21 20 adantlr φ C B A B + C = A C B A B = 1
22 21 negeqd φ C B A B + C = A C B A B = 1
23 simplr φ C B A B + C = A C B A B +
24 22 23 eqeltrrd φ C B A B + C = A 1 +
25 24 ex φ C B A B + C = A 1 +
26 25 necon3bd φ C B A B + ¬ 1 + C A
27 13 26 mpi φ C B A B + C A
28 27 ex φ C B A B + C A
29 necom C A A C
30 28 29 syl6ib φ C B A B + A C
31 7 30 sylbird φ A B F C B = π A C