| Step |
Hyp |
Ref |
Expression |
| 1 |
|
angpieqvd.angdef |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 2 |
|
angpieqvd.A |
|- ( ph -> A e. CC ) |
| 3 |
|
angpieqvd.B |
|- ( ph -> B e. CC ) |
| 4 |
|
angpieqvd.C |
|- ( ph -> C e. CC ) |
| 5 |
|
angpieqvd.AneB |
|- ( ph -> A =/= B ) |
| 6 |
|
angpieqvd.BneC |
|- ( ph -> B =/= C ) |
| 7 |
1 2 3 4 5 6
|
angpieqvdlem2 |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
| 8 |
|
1rp |
|- 1 e. RR+ |
| 9 |
|
1re |
|- 1 e. RR |
| 10 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 11 |
|
rpneg |
|- ( ( 1 e. RR /\ 1 =/= 0 ) -> ( 1 e. RR+ <-> -. -u 1 e. RR+ ) ) |
| 12 |
9 10 11
|
mp2an |
|- ( 1 e. RR+ <-> -. -u 1 e. RR+ ) |
| 13 |
8 12
|
mpbi |
|- -. -u 1 e. RR+ |
| 14 |
2 3
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ C = A ) -> ( A - B ) e. CC ) |
| 16 |
2 3 5
|
subne0d |
|- ( ph -> ( A - B ) =/= 0 ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ C = A ) -> ( A - B ) =/= 0 ) |
| 18 |
|
simpr |
|- ( ( ph /\ C = A ) -> C = A ) |
| 19 |
18
|
oveq1d |
|- ( ( ph /\ C = A ) -> ( C - B ) = ( A - B ) ) |
| 20 |
15 17 19
|
diveq1bd |
|- ( ( ph /\ C = A ) -> ( ( C - B ) / ( A - B ) ) = 1 ) |
| 21 |
20
|
adantlr |
|- ( ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) /\ C = A ) -> ( ( C - B ) / ( A - B ) ) = 1 ) |
| 22 |
21
|
negeqd |
|- ( ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) /\ C = A ) -> -u ( ( C - B ) / ( A - B ) ) = -u 1 ) |
| 23 |
|
simplr |
|- ( ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) /\ C = A ) -> -u ( ( C - B ) / ( A - B ) ) e. RR+ ) |
| 24 |
22 23
|
eqeltrrd |
|- ( ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) /\ C = A ) -> -u 1 e. RR+ ) |
| 25 |
24
|
ex |
|- ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) -> ( C = A -> -u 1 e. RR+ ) ) |
| 26 |
25
|
necon3bd |
|- ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) -> ( -. -u 1 e. RR+ -> C =/= A ) ) |
| 27 |
13 26
|
mpi |
|- ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) -> C =/= A ) |
| 28 |
27
|
ex |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ -> C =/= A ) ) |
| 29 |
|
necom |
|- ( C =/= A <-> A =/= C ) |
| 30 |
28 29
|
imbitrdi |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ -> A =/= C ) ) |
| 31 |
7 30
|
sylbird |
|- ( ph -> ( ( ( A - B ) F ( C - B ) ) = _pi -> A =/= C ) ) |