| Step |
Hyp |
Ref |
Expression |
| 1 |
|
angpieqvd.angdef |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 2 |
|
angpieqvd.A |
|- ( ph -> A e. CC ) |
| 3 |
|
angpieqvd.B |
|- ( ph -> B e. CC ) |
| 4 |
|
angpieqvd.C |
|- ( ph -> C e. CC ) |
| 5 |
|
angpieqvd.AneB |
|- ( ph -> A =/= B ) |
| 6 |
|
angpieqvd.BneC |
|- ( ph -> B =/= C ) |
| 7 |
1 2 3 4 5 6
|
angpieqvdlem2 |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
| 8 |
7
|
biimpar |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> -u ( ( C - B ) / ( A - B ) ) e. RR+ ) |
| 9 |
2
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> A e. CC ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> B e. CC ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> C e. CC ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> A =/= B ) |
| 13 |
1 2 3 4 5 6
|
angpined |
|- ( ph -> ( ( ( A - B ) F ( C - B ) ) = _pi -> A =/= C ) ) |
| 14 |
13
|
imp |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> A =/= C ) |
| 15 |
9 10 11 12 14
|
angpieqvdlem |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) ) ) |
| 16 |
8 15
|
mpbid |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) ) |
| 17 |
4 3
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( C - B ) e. CC ) |
| 19 |
4 2
|
subcld |
|- ( ph -> ( C - A ) e. CC ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( C - A ) e. CC ) |
| 21 |
14
|
necomd |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> C =/= A ) |
| 22 |
11 9 21
|
subne0d |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( C - A ) =/= 0 ) |
| 23 |
18 20 22
|
divcan1d |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( ( ( C - B ) / ( C - A ) ) x. ( C - A ) ) = ( C - B ) ) |
| 24 |
23
|
eqcomd |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( C - B ) = ( ( ( C - B ) / ( C - A ) ) x. ( C - A ) ) ) |
| 25 |
18 20 22
|
divcld |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( ( C - B ) / ( C - A ) ) e. CC ) |
| 26 |
9 10 11 25
|
affineequiv |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( B = ( ( ( ( C - B ) / ( C - A ) ) x. A ) + ( ( 1 - ( ( C - B ) / ( C - A ) ) ) x. C ) ) <-> ( C - B ) = ( ( ( C - B ) / ( C - A ) ) x. ( C - A ) ) ) ) |
| 27 |
24 26
|
mpbird |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> B = ( ( ( ( C - B ) / ( C - A ) ) x. A ) + ( ( 1 - ( ( C - B ) / ( C - A ) ) ) x. C ) ) ) |
| 28 |
|
oveq1 |
|- ( w = ( ( C - B ) / ( C - A ) ) -> ( w x. A ) = ( ( ( C - B ) / ( C - A ) ) x. A ) ) |
| 29 |
|
oveq2 |
|- ( w = ( ( C - B ) / ( C - A ) ) -> ( 1 - w ) = ( 1 - ( ( C - B ) / ( C - A ) ) ) ) |
| 30 |
29
|
oveq1d |
|- ( w = ( ( C - B ) / ( C - A ) ) -> ( ( 1 - w ) x. C ) = ( ( 1 - ( ( C - B ) / ( C - A ) ) ) x. C ) ) |
| 31 |
28 30
|
oveq12d |
|- ( w = ( ( C - B ) / ( C - A ) ) -> ( ( w x. A ) + ( ( 1 - w ) x. C ) ) = ( ( ( ( C - B ) / ( C - A ) ) x. A ) + ( ( 1 - ( ( C - B ) / ( C - A ) ) ) x. C ) ) ) |
| 32 |
31
|
rspceeqv |
|- ( ( ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) /\ B = ( ( ( ( C - B ) / ( C - A ) ) x. A ) + ( ( 1 - ( ( C - B ) / ( C - A ) ) ) x. C ) ) ) -> E. w e. ( 0 (,) 1 ) B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) ) |
| 33 |
16 27 32
|
syl2anc |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> E. w e. ( 0 (,) 1 ) B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) ) |
| 34 |
33
|
ex |
|- ( ph -> ( ( ( A - B ) F ( C - B ) ) = _pi -> E. w e. ( 0 (,) 1 ) B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) ) ) |
| 35 |
2
|
adantr |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> A e. CC ) |
| 36 |
3
|
adantr |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> B e. CC ) |
| 37 |
4
|
adantr |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> C e. CC ) |
| 38 |
|
simpr |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> w e. ( 0 (,) 1 ) ) |
| 39 |
|
elioore |
|- ( w e. ( 0 (,) 1 ) -> w e. RR ) |
| 40 |
|
recn |
|- ( w e. RR -> w e. CC ) |
| 41 |
38 39 40
|
3syl |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> w e. CC ) |
| 42 |
35 36 37 41
|
affineequiv |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> ( B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) <-> ( C - B ) = ( w x. ( C - A ) ) ) ) |
| 43 |
|
simp3 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( C - B ) = ( w x. ( C - A ) ) ) |
| 44 |
17
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( C - B ) e. CC ) |
| 45 |
41
|
3adant3 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> w e. CC ) |
| 46 |
19
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( C - A ) e. CC ) |
| 47 |
6
|
necomd |
|- ( ph -> C =/= B ) |
| 48 |
4 3 47
|
subne0d |
|- ( ph -> ( C - B ) =/= 0 ) |
| 49 |
48
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( C - B ) =/= 0 ) |
| 50 |
43 49
|
eqnetrrd |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( w x. ( C - A ) ) =/= 0 ) |
| 51 |
45 46 50
|
mulne0bbd |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( C - A ) =/= 0 ) |
| 52 |
44 45 46 51
|
divmul3d |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( ( ( C - B ) / ( C - A ) ) = w <-> ( C - B ) = ( w x. ( C - A ) ) ) ) |
| 53 |
43 52
|
mpbird |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( ( C - B ) / ( C - A ) ) = w ) |
| 54 |
|
simp2 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> w e. ( 0 (,) 1 ) ) |
| 55 |
53 54
|
eqeltrd |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) ) |
| 56 |
2
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> A e. CC ) |
| 57 |
3
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> B e. CC ) |
| 58 |
4
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> C e. CC ) |
| 59 |
5
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> A =/= B ) |
| 60 |
58 56 51
|
subne0ad |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> C =/= A ) |
| 61 |
60
|
necomd |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> A =/= C ) |
| 62 |
56 57 58 59 61
|
angpieqvdlem |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) ) ) |
| 63 |
55 62
|
mpbird |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> -u ( ( C - B ) / ( A - B ) ) e. RR+ ) |
| 64 |
6
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> B =/= C ) |
| 65 |
1 56 57 58 59 64
|
angpieqvdlem2 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
| 66 |
63 65
|
mpbid |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( ( A - B ) F ( C - B ) ) = _pi ) |
| 67 |
66
|
3expia |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> ( ( C - B ) = ( w x. ( C - A ) ) -> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
| 68 |
42 67
|
sylbid |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> ( B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) -> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
| 69 |
68
|
rexlimdva |
|- ( ph -> ( E. w e. ( 0 (,) 1 ) B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) -> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
| 70 |
34 69
|
impbid |
|- ( ph -> ( ( ( A - B ) F ( C - B ) ) = _pi <-> E. w e. ( 0 (,) 1 ) B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) ) ) |