| Step |
Hyp |
Ref |
Expression |
| 1 |
|
affineequiv.a |
|- ( ph -> A e. CC ) |
| 2 |
|
affineequiv.b |
|- ( ph -> B e. CC ) |
| 3 |
|
affineequiv.c |
|- ( ph -> C e. CC ) |
| 4 |
|
affineequiv.d |
|- ( ph -> D e. CC ) |
| 5 |
4 3
|
mulcld |
|- ( ph -> ( D x. C ) e. CC ) |
| 6 |
4 1
|
mulcld |
|- ( ph -> ( D x. A ) e. CC ) |
| 7 |
3 5 6
|
subsubd |
|- ( ph -> ( C - ( ( D x. C ) - ( D x. A ) ) ) = ( ( C - ( D x. C ) ) + ( D x. A ) ) ) |
| 8 |
3 5
|
subcld |
|- ( ph -> ( C - ( D x. C ) ) e. CC ) |
| 9 |
8 6
|
addcomd |
|- ( ph -> ( ( C - ( D x. C ) ) + ( D x. A ) ) = ( ( D x. A ) + ( C - ( D x. C ) ) ) ) |
| 10 |
7 9
|
eqtr2d |
|- ( ph -> ( ( D x. A ) + ( C - ( D x. C ) ) ) = ( C - ( ( D x. C ) - ( D x. A ) ) ) ) |
| 11 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 12 |
11 4 3
|
subdird |
|- ( ph -> ( ( 1 - D ) x. C ) = ( ( 1 x. C ) - ( D x. C ) ) ) |
| 13 |
3
|
mullidd |
|- ( ph -> ( 1 x. C ) = C ) |
| 14 |
13
|
oveq1d |
|- ( ph -> ( ( 1 x. C ) - ( D x. C ) ) = ( C - ( D x. C ) ) ) |
| 15 |
12 14
|
eqtrd |
|- ( ph -> ( ( 1 - D ) x. C ) = ( C - ( D x. C ) ) ) |
| 16 |
15
|
oveq2d |
|- ( ph -> ( ( D x. A ) + ( ( 1 - D ) x. C ) ) = ( ( D x. A ) + ( C - ( D x. C ) ) ) ) |
| 17 |
3 2
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
| 18 |
3 1
|
subcld |
|- ( ph -> ( C - A ) e. CC ) |
| 19 |
4 18
|
mulcld |
|- ( ph -> ( D x. ( C - A ) ) e. CC ) |
| 20 |
2 17 19
|
addsubassd |
|- ( ph -> ( ( B + ( C - B ) ) - ( D x. ( C - A ) ) ) = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) |
| 21 |
2 3
|
pncan3d |
|- ( ph -> ( B + ( C - B ) ) = C ) |
| 22 |
4 3 1
|
subdid |
|- ( ph -> ( D x. ( C - A ) ) = ( ( D x. C ) - ( D x. A ) ) ) |
| 23 |
21 22
|
oveq12d |
|- ( ph -> ( ( B + ( C - B ) ) - ( D x. ( C - A ) ) ) = ( C - ( ( D x. C ) - ( D x. A ) ) ) ) |
| 24 |
20 23
|
eqtr3d |
|- ( ph -> ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) = ( C - ( ( D x. C ) - ( D x. A ) ) ) ) |
| 25 |
10 16 24
|
3eqtr4d |
|- ( ph -> ( ( D x. A ) + ( ( 1 - D ) x. C ) ) = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) |
| 26 |
25
|
eqeq2d |
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> B = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) ) |
| 27 |
2
|
addridd |
|- ( ph -> ( B + 0 ) = B ) |
| 28 |
27
|
eqeq1d |
|- ( ph -> ( ( B + 0 ) = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) <-> B = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) ) |
| 29 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 30 |
17 19
|
subcld |
|- ( ph -> ( ( C - B ) - ( D x. ( C - A ) ) ) e. CC ) |
| 31 |
2 29 30
|
addcand |
|- ( ph -> ( ( B + 0 ) = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) <-> 0 = ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) |
| 32 |
26 28 31
|
3bitr2d |
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> 0 = ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) |
| 33 |
|
eqcom |
|- ( 0 = ( ( C - B ) - ( D x. ( C - A ) ) ) <-> ( ( C - B ) - ( D x. ( C - A ) ) ) = 0 ) |
| 34 |
32 33
|
bitrdi |
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> ( ( C - B ) - ( D x. ( C - A ) ) ) = 0 ) ) |
| 35 |
17 19
|
subeq0ad |
|- ( ph -> ( ( ( C - B ) - ( D x. ( C - A ) ) ) = 0 <-> ( C - B ) = ( D x. ( C - A ) ) ) ) |
| 36 |
34 35
|
bitrd |
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> ( C - B ) = ( D x. ( C - A ) ) ) ) |