| Step |
Hyp |
Ref |
Expression |
| 1 |
|
affineequiv.a |
|
| 2 |
|
affineequiv.b |
|
| 3 |
|
affineequiv.c |
|
| 4 |
|
affineequiv.d |
|
| 5 |
4 3
|
mulcld |
|
| 6 |
4 1
|
mulcld |
|
| 7 |
3 5 6
|
subsubd |
|
| 8 |
3 5
|
subcld |
|
| 9 |
8 6
|
addcomd |
|
| 10 |
7 9
|
eqtr2d |
|
| 11 |
|
1cnd |
|
| 12 |
11 4 3
|
subdird |
|
| 13 |
3
|
mullidd |
|
| 14 |
13
|
oveq1d |
|
| 15 |
12 14
|
eqtrd |
|
| 16 |
15
|
oveq2d |
|
| 17 |
3 2
|
subcld |
|
| 18 |
3 1
|
subcld |
|
| 19 |
4 18
|
mulcld |
|
| 20 |
2 17 19
|
addsubassd |
|
| 21 |
2 3
|
pncan3d |
|
| 22 |
4 3 1
|
subdid |
|
| 23 |
21 22
|
oveq12d |
|
| 24 |
20 23
|
eqtr3d |
|
| 25 |
10 16 24
|
3eqtr4d |
|
| 26 |
25
|
eqeq2d |
|
| 27 |
2
|
addridd |
|
| 28 |
27
|
eqeq1d |
|
| 29 |
|
0cnd |
|
| 30 |
17 19
|
subcld |
|
| 31 |
2 29 30
|
addcand |
|
| 32 |
26 28 31
|
3bitr2d |
|
| 33 |
|
eqcom |
|
| 34 |
32 33
|
bitrdi |
|
| 35 |
17 19
|
subeq0ad |
|
| 36 |
34 35
|
bitrd |
|