| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmlem.angdef |
|
| 2 |
|
chordthmlem.A |
|
| 3 |
|
chordthmlem.B |
|
| 4 |
|
chordthmlem.Q |
|
| 5 |
|
chordthmlem.M |
|
| 6 |
|
chordthmlem.ABequidistQ |
|
| 7 |
|
chordthmlem.AneB |
|
| 8 |
|
chordthmlem.QneM |
|
| 9 |
|
negpitopissre |
|
| 10 |
2 3
|
addcld |
|
| 11 |
10
|
halfcld |
|
| 12 |
5 11
|
eqeltrd |
|
| 13 |
4 12
|
subcld |
|
| 14 |
4 12 8
|
subne0d |
|
| 15 |
3 12
|
subcld |
|
| 16 |
5
|
oveq1d |
|
| 17 |
12
|
times2d |
|
| 18 |
|
2cnd |
|
| 19 |
|
2ne0 |
|
| 20 |
19
|
a1i |
|
| 21 |
10 18 20
|
divcan1d |
|
| 22 |
16 17 21
|
3eqtr3d |
|
| 23 |
2 3 3 7
|
addneintr2d |
|
| 24 |
22 23
|
eqnetrd |
|
| 25 |
24
|
neneqd |
|
| 26 |
|
oveq12 |
|
| 27 |
26
|
anidms |
|
| 28 |
25 27
|
nsyl |
|
| 29 |
28
|
neqned |
|
| 30 |
29
|
necomd |
|
| 31 |
3 12 30
|
subne0d |
|
| 32 |
1 13 14 15 31
|
angcld |
|
| 33 |
9 32
|
sselid |
|
| 34 |
33
|
recnd |
|
| 35 |
34
|
coscld |
|
| 36 |
3 12
|
negsubdi2d |
|
| 37 |
12 12 2 3
|
addsubeq4d |
|
| 38 |
22 37
|
mpbid |
|
| 39 |
36 38
|
eqtr4d |
|
| 40 |
39
|
oveq2d |
|
| 41 |
40
|
fveq2d |
|
| 42 |
1 13 14 15 31
|
cosangneg2d |
|
| 43 |
2 2 3 7
|
addneintrd |
|
| 44 |
43 22
|
neeqtrrd |
|
| 45 |
44
|
necomd |
|
| 46 |
45
|
neneqd |
|
| 47 |
|
oveq12 |
|
| 48 |
47
|
anidms |
|
| 49 |
46 48
|
nsyl |
|
| 50 |
49
|
neqned |
|
| 51 |
|
eqidd |
|
| 52 |
2 12
|
subcld |
|
| 53 |
52
|
absnegd |
|
| 54 |
2 12
|
negsubdi2d |
|
| 55 |
54
|
fveq2d |
|
| 56 |
38
|
fveq2d |
|
| 57 |
53 55 56
|
3eqtr3d |
|
| 58 |
1 4 12 2 4 12 3 8 50 8 29 51 57 6
|
ssscongptld |
|
| 59 |
41 42 58
|
3eqtr3rd |
|
| 60 |
35 59
|
eqnegad |
|
| 61 |
|
coseq0negpitopi |
|
| 62 |
32 61
|
syl |
|
| 63 |
60 62
|
mpbid |
|