| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmlem2.angdef |
|
| 2 |
|
chordthmlem2.A |
|
| 3 |
|
chordthmlem2.B |
|
| 4 |
|
chordthmlem2.Q |
|
| 5 |
|
chordthmlem2.X |
|
| 6 |
|
chordthmlem2.M |
|
| 7 |
|
chordthmlem2.P |
|
| 8 |
|
chordthmlem2.ABequidistQ |
|
| 9 |
|
chordthmlem2.PneM |
|
| 10 |
|
chordthmlem2.QneM |
|
| 11 |
|
2re |
|
| 12 |
11
|
a1i |
|
| 13 |
|
2ne0 |
|
| 14 |
13
|
a1i |
|
| 15 |
12 14
|
rereccld |
|
| 16 |
15 5
|
resubcld |
|
| 17 |
16
|
recnd |
|
| 18 |
3 2
|
subcld |
|
| 19 |
15
|
recnd |
|
| 20 |
5
|
recnd |
|
| 21 |
19 20 18
|
subdird |
|
| 22 |
|
2cnd |
|
| 23 |
3 22 14
|
divcan4d |
|
| 24 |
3
|
times2d |
|
| 25 |
24
|
oveq1d |
|
| 26 |
23 25
|
eqtr3d |
|
| 27 |
26 6
|
oveq12d |
|
| 28 |
3 3
|
addcld |
|
| 29 |
2 3
|
addcld |
|
| 30 |
28 29 22 14
|
divsubdird |
|
| 31 |
3 2 3
|
pnpcan2d |
|
| 32 |
31
|
oveq1d |
|
| 33 |
27 30 32
|
3eqtr2d |
|
| 34 |
18 22 14
|
divrec2d |
|
| 35 |
33 34
|
eqtrd |
|
| 36 |
20 2
|
mulcld |
|
| 37 |
|
1cnd |
|
| 38 |
37 20
|
subcld |
|
| 39 |
38 3
|
mulcld |
|
| 40 |
36 39
|
addcld |
|
| 41 |
7 40
|
eqeltrd |
|
| 42 |
2 41 3 20
|
affineequiv |
|
| 43 |
7 42
|
mpbid |
|
| 44 |
35 43
|
oveq12d |
|
| 45 |
29
|
halfcld |
|
| 46 |
6 45
|
eqeltrd |
|
| 47 |
3 46 41
|
nnncan1d |
|
| 48 |
21 44 47
|
3eqtr2rd |
|
| 49 |
41 46 9
|
subne0d |
|
| 50 |
48 49
|
eqnetrrd |
|
| 51 |
17 18 50
|
mulne0bbd |
|
| 52 |
3 2 51
|
subne0ad |
|
| 53 |
52
|
necomd |
|
| 54 |
1 2 3 4 6 8 53 10
|
chordthmlem |
|
| 55 |
4 46
|
subcld |
|
| 56 |
41 46
|
subcld |
|
| 57 |
3 46
|
subcld |
|
| 58 |
4 46 10
|
subne0d |
|
| 59 |
22 14
|
recne0d |
|
| 60 |
19 18 59 51
|
mulne0d |
|
| 61 |
35 60
|
eqnetrd |
|
| 62 |
35 48
|
oveq12d |
|
| 63 |
17 18 50
|
mulne0bad |
|
| 64 |
19 17 18 63 51
|
divcan5rd |
|
| 65 |
62 64
|
eqtrd |
|
| 66 |
15 16 63
|
redivcld |
|
| 67 |
65 66
|
eqeltrd |
|
| 68 |
1 55 56 57 58 49 61 67
|
angrtmuld |
|
| 69 |
54 68
|
mpbird |
|