| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmlem2.angdef |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 2 |
|
chordthmlem2.A |
|- ( ph -> A e. CC ) |
| 3 |
|
chordthmlem2.B |
|- ( ph -> B e. CC ) |
| 4 |
|
chordthmlem2.Q |
|- ( ph -> Q e. CC ) |
| 5 |
|
chordthmlem2.X |
|- ( ph -> X e. RR ) |
| 6 |
|
chordthmlem2.M |
|- ( ph -> M = ( ( A + B ) / 2 ) ) |
| 7 |
|
chordthmlem2.P |
|- ( ph -> P = ( ( X x. A ) + ( ( 1 - X ) x. B ) ) ) |
| 8 |
|
chordthmlem2.ABequidistQ |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
| 9 |
|
chordthmlem2.PneM |
|- ( ph -> P =/= M ) |
| 10 |
|
chordthmlem2.QneM |
|- ( ph -> Q =/= M ) |
| 11 |
|
2re |
|- 2 e. RR |
| 12 |
11
|
a1i |
|- ( ph -> 2 e. RR ) |
| 13 |
|
2ne0 |
|- 2 =/= 0 |
| 14 |
13
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 15 |
12 14
|
rereccld |
|- ( ph -> ( 1 / 2 ) e. RR ) |
| 16 |
15 5
|
resubcld |
|- ( ph -> ( ( 1 / 2 ) - X ) e. RR ) |
| 17 |
16
|
recnd |
|- ( ph -> ( ( 1 / 2 ) - X ) e. CC ) |
| 18 |
3 2
|
subcld |
|- ( ph -> ( B - A ) e. CC ) |
| 19 |
15
|
recnd |
|- ( ph -> ( 1 / 2 ) e. CC ) |
| 20 |
5
|
recnd |
|- ( ph -> X e. CC ) |
| 21 |
19 20 18
|
subdird |
|- ( ph -> ( ( ( 1 / 2 ) - X ) x. ( B - A ) ) = ( ( ( 1 / 2 ) x. ( B - A ) ) - ( X x. ( B - A ) ) ) ) |
| 22 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 23 |
3 22 14
|
divcan4d |
|- ( ph -> ( ( B x. 2 ) / 2 ) = B ) |
| 24 |
3
|
times2d |
|- ( ph -> ( B x. 2 ) = ( B + B ) ) |
| 25 |
24
|
oveq1d |
|- ( ph -> ( ( B x. 2 ) / 2 ) = ( ( B + B ) / 2 ) ) |
| 26 |
23 25
|
eqtr3d |
|- ( ph -> B = ( ( B + B ) / 2 ) ) |
| 27 |
26 6
|
oveq12d |
|- ( ph -> ( B - M ) = ( ( ( B + B ) / 2 ) - ( ( A + B ) / 2 ) ) ) |
| 28 |
3 3
|
addcld |
|- ( ph -> ( B + B ) e. CC ) |
| 29 |
2 3
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
| 30 |
28 29 22 14
|
divsubdird |
|- ( ph -> ( ( ( B + B ) - ( A + B ) ) / 2 ) = ( ( ( B + B ) / 2 ) - ( ( A + B ) / 2 ) ) ) |
| 31 |
3 2 3
|
pnpcan2d |
|- ( ph -> ( ( B + B ) - ( A + B ) ) = ( B - A ) ) |
| 32 |
31
|
oveq1d |
|- ( ph -> ( ( ( B + B ) - ( A + B ) ) / 2 ) = ( ( B - A ) / 2 ) ) |
| 33 |
27 30 32
|
3eqtr2d |
|- ( ph -> ( B - M ) = ( ( B - A ) / 2 ) ) |
| 34 |
18 22 14
|
divrec2d |
|- ( ph -> ( ( B - A ) / 2 ) = ( ( 1 / 2 ) x. ( B - A ) ) ) |
| 35 |
33 34
|
eqtrd |
|- ( ph -> ( B - M ) = ( ( 1 / 2 ) x. ( B - A ) ) ) |
| 36 |
20 2
|
mulcld |
|- ( ph -> ( X x. A ) e. CC ) |
| 37 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 38 |
37 20
|
subcld |
|- ( ph -> ( 1 - X ) e. CC ) |
| 39 |
38 3
|
mulcld |
|- ( ph -> ( ( 1 - X ) x. B ) e. CC ) |
| 40 |
36 39
|
addcld |
|- ( ph -> ( ( X x. A ) + ( ( 1 - X ) x. B ) ) e. CC ) |
| 41 |
7 40
|
eqeltrd |
|- ( ph -> P e. CC ) |
| 42 |
2 41 3 20
|
affineequiv |
|- ( ph -> ( P = ( ( X x. A ) + ( ( 1 - X ) x. B ) ) <-> ( B - P ) = ( X x. ( B - A ) ) ) ) |
| 43 |
7 42
|
mpbid |
|- ( ph -> ( B - P ) = ( X x. ( B - A ) ) ) |
| 44 |
35 43
|
oveq12d |
|- ( ph -> ( ( B - M ) - ( B - P ) ) = ( ( ( 1 / 2 ) x. ( B - A ) ) - ( X x. ( B - A ) ) ) ) |
| 45 |
29
|
halfcld |
|- ( ph -> ( ( A + B ) / 2 ) e. CC ) |
| 46 |
6 45
|
eqeltrd |
|- ( ph -> M e. CC ) |
| 47 |
3 46 41
|
nnncan1d |
|- ( ph -> ( ( B - M ) - ( B - P ) ) = ( P - M ) ) |
| 48 |
21 44 47
|
3eqtr2rd |
|- ( ph -> ( P - M ) = ( ( ( 1 / 2 ) - X ) x. ( B - A ) ) ) |
| 49 |
41 46 9
|
subne0d |
|- ( ph -> ( P - M ) =/= 0 ) |
| 50 |
48 49
|
eqnetrrd |
|- ( ph -> ( ( ( 1 / 2 ) - X ) x. ( B - A ) ) =/= 0 ) |
| 51 |
17 18 50
|
mulne0bbd |
|- ( ph -> ( B - A ) =/= 0 ) |
| 52 |
3 2 51
|
subne0ad |
|- ( ph -> B =/= A ) |
| 53 |
52
|
necomd |
|- ( ph -> A =/= B ) |
| 54 |
1 2 3 4 6 8 53 10
|
chordthmlem |
|- ( ph -> ( ( Q - M ) F ( B - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 55 |
4 46
|
subcld |
|- ( ph -> ( Q - M ) e. CC ) |
| 56 |
41 46
|
subcld |
|- ( ph -> ( P - M ) e. CC ) |
| 57 |
3 46
|
subcld |
|- ( ph -> ( B - M ) e. CC ) |
| 58 |
4 46 10
|
subne0d |
|- ( ph -> ( Q - M ) =/= 0 ) |
| 59 |
22 14
|
recne0d |
|- ( ph -> ( 1 / 2 ) =/= 0 ) |
| 60 |
19 18 59 51
|
mulne0d |
|- ( ph -> ( ( 1 / 2 ) x. ( B - A ) ) =/= 0 ) |
| 61 |
35 60
|
eqnetrd |
|- ( ph -> ( B - M ) =/= 0 ) |
| 62 |
35 48
|
oveq12d |
|- ( ph -> ( ( B - M ) / ( P - M ) ) = ( ( ( 1 / 2 ) x. ( B - A ) ) / ( ( ( 1 / 2 ) - X ) x. ( B - A ) ) ) ) |
| 63 |
17 18 50
|
mulne0bad |
|- ( ph -> ( ( 1 / 2 ) - X ) =/= 0 ) |
| 64 |
19 17 18 63 51
|
divcan5rd |
|- ( ph -> ( ( ( 1 / 2 ) x. ( B - A ) ) / ( ( ( 1 / 2 ) - X ) x. ( B - A ) ) ) = ( ( 1 / 2 ) / ( ( 1 / 2 ) - X ) ) ) |
| 65 |
62 64
|
eqtrd |
|- ( ph -> ( ( B - M ) / ( P - M ) ) = ( ( 1 / 2 ) / ( ( 1 / 2 ) - X ) ) ) |
| 66 |
15 16 63
|
redivcld |
|- ( ph -> ( ( 1 / 2 ) / ( ( 1 / 2 ) - X ) ) e. RR ) |
| 67 |
65 66
|
eqeltrd |
|- ( ph -> ( ( B - M ) / ( P - M ) ) e. RR ) |
| 68 |
1 55 56 57 58 49 61 67
|
angrtmuld |
|- ( ph -> ( ( ( Q - M ) F ( P - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } <-> ( ( Q - M ) F ( B - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |
| 69 |
54 68
|
mpbird |
|- ( ph -> ( ( Q - M ) F ( P - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |