| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmlem3.A |
|- ( ph -> A e. CC ) |
| 2 |
|
chordthmlem3.B |
|- ( ph -> B e. CC ) |
| 3 |
|
chordthmlem3.Q |
|- ( ph -> Q e. CC ) |
| 4 |
|
chordthmlem3.X |
|- ( ph -> X e. RR ) |
| 5 |
|
chordthmlem3.M |
|- ( ph -> M = ( ( A + B ) / 2 ) ) |
| 6 |
|
chordthmlem3.P |
|- ( ph -> P = ( ( X x. A ) + ( ( 1 - X ) x. B ) ) ) |
| 7 |
|
chordthmlem3.ABequidistQ |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
| 8 |
1 2
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
| 9 |
8
|
halfcld |
|- ( ph -> ( ( A + B ) / 2 ) e. CC ) |
| 10 |
5 9
|
eqeltrd |
|- ( ph -> M e. CC ) |
| 11 |
3 10
|
subcld |
|- ( ph -> ( Q - M ) e. CC ) |
| 12 |
11
|
abscld |
|- ( ph -> ( abs ` ( Q - M ) ) e. RR ) |
| 13 |
12
|
recnd |
|- ( ph -> ( abs ` ( Q - M ) ) e. CC ) |
| 14 |
13
|
sqcld |
|- ( ph -> ( ( abs ` ( Q - M ) ) ^ 2 ) e. CC ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ P = M ) -> ( ( abs ` ( Q - M ) ) ^ 2 ) e. CC ) |
| 16 |
15
|
addridd |
|- ( ( ph /\ P = M ) -> ( ( ( abs ` ( Q - M ) ) ^ 2 ) + 0 ) = ( ( abs ` ( Q - M ) ) ^ 2 ) ) |
| 17 |
4
|
recnd |
|- ( ph -> X e. CC ) |
| 18 |
17 1
|
mulcld |
|- ( ph -> ( X x. A ) e. CC ) |
| 19 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 20 |
19 17
|
subcld |
|- ( ph -> ( 1 - X ) e. CC ) |
| 21 |
20 2
|
mulcld |
|- ( ph -> ( ( 1 - X ) x. B ) e. CC ) |
| 22 |
18 21
|
addcld |
|- ( ph -> ( ( X x. A ) + ( ( 1 - X ) x. B ) ) e. CC ) |
| 23 |
6 22
|
eqeltrd |
|- ( ph -> P e. CC ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ P = M ) -> P e. CC ) |
| 25 |
|
simpr |
|- ( ( ph /\ P = M ) -> P = M ) |
| 26 |
24 25
|
subeq0bd |
|- ( ( ph /\ P = M ) -> ( P - M ) = 0 ) |
| 27 |
26
|
abs00bd |
|- ( ( ph /\ P = M ) -> ( abs ` ( P - M ) ) = 0 ) |
| 28 |
27
|
sq0id |
|- ( ( ph /\ P = M ) -> ( ( abs ` ( P - M ) ) ^ 2 ) = 0 ) |
| 29 |
28
|
oveq2d |
|- ( ( ph /\ P = M ) -> ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + 0 ) ) |
| 30 |
3
|
adantr |
|- ( ( ph /\ P = M ) -> Q e. CC ) |
| 31 |
30 24
|
abssubd |
|- ( ( ph /\ P = M ) -> ( abs ` ( Q - P ) ) = ( abs ` ( P - Q ) ) ) |
| 32 |
25
|
oveq2d |
|- ( ( ph /\ P = M ) -> ( Q - P ) = ( Q - M ) ) |
| 33 |
32
|
fveq2d |
|- ( ( ph /\ P = M ) -> ( abs ` ( Q - P ) ) = ( abs ` ( Q - M ) ) ) |
| 34 |
31 33
|
eqtr3d |
|- ( ( ph /\ P = M ) -> ( abs ` ( P - Q ) ) = ( abs ` ( Q - M ) ) ) |
| 35 |
34
|
oveq1d |
|- ( ( ph /\ P = M ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( abs ` ( Q - M ) ) ^ 2 ) ) |
| 36 |
16 29 35
|
3eqtr4rd |
|- ( ( ph /\ P = M ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |
| 37 |
23 10
|
subcld |
|- ( ph -> ( P - M ) e. CC ) |
| 38 |
37
|
abscld |
|- ( ph -> ( abs ` ( P - M ) ) e. RR ) |
| 39 |
38
|
recnd |
|- ( ph -> ( abs ` ( P - M ) ) e. CC ) |
| 40 |
39
|
sqcld |
|- ( ph -> ( ( abs ` ( P - M ) ) ^ 2 ) e. CC ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ Q = M ) -> ( ( abs ` ( P - M ) ) ^ 2 ) e. CC ) |
| 42 |
41
|
addlidd |
|- ( ( ph /\ Q = M ) -> ( 0 + ( ( abs ` ( P - M ) ) ^ 2 ) ) = ( ( abs ` ( P - M ) ) ^ 2 ) ) |
| 43 |
3
|
adantr |
|- ( ( ph /\ Q = M ) -> Q e. CC ) |
| 44 |
|
simpr |
|- ( ( ph /\ Q = M ) -> Q = M ) |
| 45 |
43 44
|
subeq0bd |
|- ( ( ph /\ Q = M ) -> ( Q - M ) = 0 ) |
| 46 |
45
|
abs00bd |
|- ( ( ph /\ Q = M ) -> ( abs ` ( Q - M ) ) = 0 ) |
| 47 |
46
|
sq0id |
|- ( ( ph /\ Q = M ) -> ( ( abs ` ( Q - M ) ) ^ 2 ) = 0 ) |
| 48 |
47
|
oveq1d |
|- ( ( ph /\ Q = M ) -> ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) = ( 0 + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |
| 49 |
44
|
oveq2d |
|- ( ( ph /\ Q = M ) -> ( P - Q ) = ( P - M ) ) |
| 50 |
49
|
fveq2d |
|- ( ( ph /\ Q = M ) -> ( abs ` ( P - Q ) ) = ( abs ` ( P - M ) ) ) |
| 51 |
50
|
oveq1d |
|- ( ( ph /\ Q = M ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( abs ` ( P - M ) ) ^ 2 ) ) |
| 52 |
42 48 51
|
3eqtr4rd |
|- ( ( ph /\ Q = M ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |
| 53 |
23
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> P e. CC ) |
| 54 |
3
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> Q e. CC ) |
| 55 |
10
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> M e. CC ) |
| 56 |
|
simprl |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> P =/= M ) |
| 57 |
|
simprr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> Q =/= M ) |
| 58 |
|
eqid |
|- ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 59 |
1
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> A e. CC ) |
| 60 |
2
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> B e. CC ) |
| 61 |
4
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> X e. RR ) |
| 62 |
5
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> M = ( ( A + B ) / 2 ) ) |
| 63 |
6
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> P = ( ( X x. A ) + ( ( 1 - X ) x. B ) ) ) |
| 64 |
7
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
| 65 |
58 59 60 54 61 62 63 64 56 57
|
chordthmlem2 |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> ( ( Q - M ) ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) ( P - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 66 |
|
eqid |
|- ( abs ` ( Q - M ) ) = ( abs ` ( Q - M ) ) |
| 67 |
|
eqid |
|- ( abs ` ( P - M ) ) = ( abs ` ( P - M ) ) |
| 68 |
|
eqid |
|- ( abs ` ( P - Q ) ) = ( abs ` ( P - Q ) ) |
| 69 |
|
eqid |
|- ( ( Q - M ) ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) ( P - M ) ) = ( ( Q - M ) ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) ( P - M ) ) |
| 70 |
58 66 67 68 69
|
pythag |
|- ( ( ( P e. CC /\ Q e. CC /\ M e. CC ) /\ ( P =/= M /\ Q =/= M ) /\ ( ( Q - M ) ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) ( P - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |
| 71 |
53 54 55 56 57 65 70
|
syl321anc |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |
| 72 |
36 52 71
|
pm2.61da2ne |
|- ( ph -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |