| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmlem3.A |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
chordthmlem3.B |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
chordthmlem3.Q |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 4 |
|
chordthmlem3.X |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 5 |
|
chordthmlem3.M |
⊢ ( 𝜑 → 𝑀 = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 6 |
|
chordthmlem3.P |
⊢ ( 𝜑 → 𝑃 = ( ( 𝑋 · 𝐴 ) + ( ( 1 − 𝑋 ) · 𝐵 ) ) ) |
| 7 |
|
chordthmlem3.ABequidistQ |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝑄 ) ) = ( abs ‘ ( 𝐵 − 𝑄 ) ) ) |
| 8 |
1 2
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 9 |
8
|
halfcld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℂ ) |
| 10 |
5 9
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 11 |
3 10
|
subcld |
⊢ ( 𝜑 → ( 𝑄 − 𝑀 ) ∈ ℂ ) |
| 12 |
11
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝑄 − 𝑀 ) ) ∈ ℝ ) |
| 13 |
12
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑄 − 𝑀 ) ) ∈ ℂ ) |
| 14 |
13
|
sqcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) ∈ ℂ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) ∈ ℂ ) |
| 16 |
15
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) + 0 ) = ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) ) |
| 17 |
4
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 18 |
17 1
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · 𝐴 ) ∈ ℂ ) |
| 19 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 20 |
19 17
|
subcld |
⊢ ( 𝜑 → ( 1 − 𝑋 ) ∈ ℂ ) |
| 21 |
20 2
|
mulcld |
⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · 𝐵 ) ∈ ℂ ) |
| 22 |
18 21
|
addcld |
⊢ ( 𝜑 → ( ( 𝑋 · 𝐴 ) + ( ( 1 − 𝑋 ) · 𝐵 ) ) ∈ ℂ ) |
| 23 |
6 22
|
eqeltrd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → 𝑃 ∈ ℂ ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → 𝑃 = 𝑀 ) |
| 26 |
24 25
|
subeq0bd |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( 𝑃 − 𝑀 ) = 0 ) |
| 27 |
26
|
abs00bd |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( abs ‘ ( 𝑃 − 𝑀 ) ) = 0 ) |
| 28 |
27
|
sq0id |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) = 0 ) |
| 29 |
28
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) = ( ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) + 0 ) ) |
| 30 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → 𝑄 ∈ ℂ ) |
| 31 |
30 24
|
abssubd |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( abs ‘ ( 𝑄 − 𝑃 ) ) = ( abs ‘ ( 𝑃 − 𝑄 ) ) ) |
| 32 |
25
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( 𝑄 − 𝑃 ) = ( 𝑄 − 𝑀 ) ) |
| 33 |
32
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( abs ‘ ( 𝑄 − 𝑃 ) ) = ( abs ‘ ( 𝑄 − 𝑀 ) ) ) |
| 34 |
31 33
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( abs ‘ ( 𝑃 − 𝑄 ) ) = ( abs ‘ ( 𝑄 − 𝑀 ) ) ) |
| 35 |
34
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( ( abs ‘ ( 𝑃 − 𝑄 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) ) |
| 36 |
16 29 35
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑀 ) → ( ( abs ‘ ( 𝑃 − 𝑄 ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) ) |
| 37 |
23 10
|
subcld |
⊢ ( 𝜑 → ( 𝑃 − 𝑀 ) ∈ ℂ ) |
| 38 |
37
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝑃 − 𝑀 ) ) ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑃 − 𝑀 ) ) ∈ ℂ ) |
| 40 |
39
|
sqcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ∈ ℂ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ∈ ℂ ) |
| 42 |
41
|
addlidd |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → ( 0 + ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) = ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) |
| 43 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → 𝑄 ∈ ℂ ) |
| 44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → 𝑄 = 𝑀 ) |
| 45 |
43 44
|
subeq0bd |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → ( 𝑄 − 𝑀 ) = 0 ) |
| 46 |
45
|
abs00bd |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → ( abs ‘ ( 𝑄 − 𝑀 ) ) = 0 ) |
| 47 |
46
|
sq0id |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) = 0 ) |
| 48 |
47
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → ( ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) = ( 0 + ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) ) |
| 49 |
44
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → ( 𝑃 − 𝑄 ) = ( 𝑃 − 𝑀 ) ) |
| 50 |
49
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → ( abs ‘ ( 𝑃 − 𝑄 ) ) = ( abs ‘ ( 𝑃 − 𝑀 ) ) ) |
| 51 |
50
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → ( ( abs ‘ ( 𝑃 − 𝑄 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) |
| 52 |
42 48 51
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑀 ) → ( ( abs ‘ ( 𝑃 − 𝑄 ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) ) |
| 53 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → 𝑃 ∈ ℂ ) |
| 54 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → 𝑄 ∈ ℂ ) |
| 55 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → 𝑀 ∈ ℂ ) |
| 56 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → 𝑃 ≠ 𝑀 ) |
| 57 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → 𝑄 ≠ 𝑀 ) |
| 58 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) |
| 59 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → 𝐴 ∈ ℂ ) |
| 60 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → 𝐵 ∈ ℂ ) |
| 61 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → 𝑋 ∈ ℝ ) |
| 62 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → 𝑀 = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 63 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → 𝑃 = ( ( 𝑋 · 𝐴 ) + ( ( 1 − 𝑋 ) · 𝐵 ) ) ) |
| 64 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → ( abs ‘ ( 𝐴 − 𝑄 ) ) = ( abs ‘ ( 𝐵 − 𝑄 ) ) ) |
| 65 |
58 59 60 54 61 62 63 64 56 57
|
chordthmlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → ( ( 𝑄 − 𝑀 ) ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) ( 𝑃 − 𝑀 ) ) ∈ { ( π / 2 ) , - ( π / 2 ) } ) |
| 66 |
|
eqid |
⊢ ( abs ‘ ( 𝑄 − 𝑀 ) ) = ( abs ‘ ( 𝑄 − 𝑀 ) ) |
| 67 |
|
eqid |
⊢ ( abs ‘ ( 𝑃 − 𝑀 ) ) = ( abs ‘ ( 𝑃 − 𝑀 ) ) |
| 68 |
|
eqid |
⊢ ( abs ‘ ( 𝑃 − 𝑄 ) ) = ( abs ‘ ( 𝑃 − 𝑄 ) ) |
| 69 |
|
eqid |
⊢ ( ( 𝑄 − 𝑀 ) ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) ( 𝑃 − 𝑀 ) ) = ( ( 𝑄 − 𝑀 ) ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) ( 𝑃 − 𝑀 ) ) |
| 70 |
58 66 67 68 69
|
pythag |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ∧ ( ( 𝑄 − 𝑀 ) ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) ( 𝑃 − 𝑀 ) ) ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( ( abs ‘ ( 𝑃 − 𝑄 ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) ) |
| 71 |
53 54 55 56 57 65 70
|
syl321anc |
⊢ ( ( 𝜑 ∧ ( 𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀 ) ) → ( ( abs ‘ ( 𝑃 − 𝑄 ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) ) |
| 72 |
36 52 71
|
pm2.61da2ne |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑃 − 𝑄 ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝑄 − 𝑀 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) ) |