| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmlem4.A |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
chordthmlem4.B |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
chordthmlem4.X |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 [,] 1 ) ) |
| 4 |
|
chordthmlem4.M |
⊢ ( 𝜑 → 𝑀 = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 5 |
|
chordthmlem4.P |
⊢ ( 𝜑 → 𝑃 = ( ( 𝑋 · 𝐴 ) + ( ( 1 − 𝑋 ) · 𝐵 ) ) ) |
| 6 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 7 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 8 |
7 3
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 9 |
6 8
|
resubcld |
⊢ ( 𝜑 → ( 1 − 𝑋 ) ∈ ℝ ) |
| 10 |
9
|
recnd |
⊢ ( 𝜑 → ( 1 − 𝑋 ) ∈ ℂ ) |
| 11 |
10
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 1 − 𝑋 ) ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 1 − 𝑋 ) ) ∈ ℂ ) |
| 13 |
2 1
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 14 |
13
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 15 |
14
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐴 ) ) ∈ ℂ ) |
| 16 |
8
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 17 |
16
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 18 |
17
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 19 |
12 15 18 15
|
mul4d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) · ( ( abs ‘ 𝑋 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) = ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ 𝑋 ) ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) ) |
| 20 |
16 1
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · 𝐴 ) ∈ ℂ ) |
| 21 |
10 2
|
mulcld |
⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · 𝐵 ) ∈ ℂ ) |
| 22 |
20 21
|
addcld |
⊢ ( 𝜑 → ( ( 𝑋 · 𝐴 ) + ( ( 1 − 𝑋 ) · 𝐵 ) ) ∈ ℂ ) |
| 23 |
5 22
|
eqeltrd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 24 |
1 23 2 16
|
affineequiv2 |
⊢ ( 𝜑 → ( 𝑃 = ( ( 𝑋 · 𝐴 ) + ( ( 1 − 𝑋 ) · 𝐵 ) ) ↔ ( 𝑃 − 𝐴 ) = ( ( 1 − 𝑋 ) · ( 𝐵 − 𝐴 ) ) ) ) |
| 25 |
5 24
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 − 𝐴 ) = ( ( 1 − 𝑋 ) · ( 𝐵 − 𝐴 ) ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑃 − 𝐴 ) ) = ( abs ‘ ( ( 1 − 𝑋 ) · ( 𝐵 − 𝐴 ) ) ) ) |
| 27 |
10 13
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( ( 1 − 𝑋 ) · ( 𝐵 − 𝐴 ) ) ) = ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 28 |
26 27
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑃 − 𝐴 ) ) = ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 29 |
23 2
|
abssubd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑃 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝑃 ) ) ) |
| 30 |
1 23 2 16
|
affineequiv |
⊢ ( 𝜑 → ( 𝑃 = ( ( 𝑋 · 𝐴 ) + ( ( 1 − 𝑋 ) · 𝐵 ) ) ↔ ( 𝐵 − 𝑃 ) = ( 𝑋 · ( 𝐵 − 𝐴 ) ) ) ) |
| 31 |
5 30
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 − 𝑃 ) = ( 𝑋 · ( 𝐵 − 𝐴 ) ) ) |
| 32 |
31
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝑃 ) ) = ( abs ‘ ( 𝑋 · ( 𝐵 − 𝐴 ) ) ) ) |
| 33 |
16 13
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 · ( 𝐵 − 𝐴 ) ) ) = ( ( abs ‘ 𝑋 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 34 |
29 32 33
|
3eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑃 − 𝐵 ) ) = ( ( abs ‘ 𝑋 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 35 |
28 34
|
oveq12d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑃 − 𝐴 ) ) · ( abs ‘ ( 𝑃 − 𝐵 ) ) ) = ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) · ( ( abs ‘ 𝑋 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) ) |
| 36 |
15
|
sqvald |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) = ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ 𝑋 ) ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) = ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ 𝑋 ) ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) ) |
| 38 |
19 35 37
|
3eqtr4d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑃 − 𝐴 ) ) · ( abs ‘ ( 𝑃 − 𝐵 ) ) ) = ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ 𝑋 ) ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) ) |
| 39 |
6
|
recnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 40 |
39
|
halfcld |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
| 41 |
40
|
sqcld |
⊢ ( 𝜑 → ( ( 1 / 2 ) ↑ 2 ) ∈ ℂ ) |
| 42 |
6
|
rehalfcld |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
| 43 |
42 8
|
resubcld |
⊢ ( 𝜑 → ( ( 1 / 2 ) − 𝑋 ) ∈ ℝ ) |
| 44 |
43
|
recnd |
⊢ ( 𝜑 → ( ( 1 / 2 ) − 𝑋 ) ∈ ℂ ) |
| 45 |
44
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ∈ ℝ ) |
| 46 |
45
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ∈ ℂ ) |
| 47 |
46
|
sqcld |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) ∈ ℂ ) |
| 48 |
15
|
sqcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ∈ ℂ ) |
| 49 |
41 47 48
|
subdird |
⊢ ( 𝜑 → ( ( ( ( 1 / 2 ) ↑ 2 ) − ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) = ( ( ( ( 1 / 2 ) ↑ 2 ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) − ( ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) ) ) |
| 50 |
|
subsq |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( ( 1 / 2 ) − 𝑋 ) ∈ ℂ ) → ( ( ( 1 / 2 ) ↑ 2 ) − ( ( ( 1 / 2 ) − 𝑋 ) ↑ 2 ) ) = ( ( ( 1 / 2 ) + ( ( 1 / 2 ) − 𝑋 ) ) · ( ( 1 / 2 ) − ( ( 1 / 2 ) − 𝑋 ) ) ) ) |
| 51 |
40 44 50
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) ↑ 2 ) − ( ( ( 1 / 2 ) − 𝑋 ) ↑ 2 ) ) = ( ( ( 1 / 2 ) + ( ( 1 / 2 ) − 𝑋 ) ) · ( ( 1 / 2 ) − ( ( 1 / 2 ) − 𝑋 ) ) ) ) |
| 52 |
40 40 16
|
addsubassd |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( 1 / 2 ) ) − 𝑋 ) = ( ( 1 / 2 ) + ( ( 1 / 2 ) − 𝑋 ) ) ) |
| 53 |
39
|
2halvesd |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
| 54 |
53
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( 1 / 2 ) ) − 𝑋 ) = ( 1 − 𝑋 ) ) |
| 55 |
52 54
|
eqtr3d |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( ( 1 / 2 ) − 𝑋 ) ) = ( 1 − 𝑋 ) ) |
| 56 |
40 16
|
nncand |
⊢ ( 𝜑 → ( ( 1 / 2 ) − ( ( 1 / 2 ) − 𝑋 ) ) = 𝑋 ) |
| 57 |
55 56
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( ( 1 / 2 ) − 𝑋 ) ) · ( ( 1 / 2 ) − ( ( 1 / 2 ) − 𝑋 ) ) ) = ( ( 1 − 𝑋 ) · 𝑋 ) ) |
| 58 |
51 57
|
eqtr2d |
⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · 𝑋 ) = ( ( ( 1 / 2 ) ↑ 2 ) − ( ( ( 1 / 2 ) − 𝑋 ) ↑ 2 ) ) ) |
| 59 |
|
elicc01 |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) |
| 60 |
3 59
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) |
| 61 |
60
|
simp3d |
⊢ ( 𝜑 → 𝑋 ≤ 1 ) |
| 62 |
8 6 61
|
abssubge0d |
⊢ ( 𝜑 → ( abs ‘ ( 1 − 𝑋 ) ) = ( 1 − 𝑋 ) ) |
| 63 |
60
|
simp2d |
⊢ ( 𝜑 → 0 ≤ 𝑋 ) |
| 64 |
8 63
|
absidd |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) = 𝑋 ) |
| 65 |
62 64
|
oveq12d |
⊢ ( 𝜑 → ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ 𝑋 ) ) = ( ( 1 − 𝑋 ) · 𝑋 ) ) |
| 66 |
|
absresq |
⊢ ( ( ( 1 / 2 ) − 𝑋 ) ∈ ℝ → ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) = ( ( ( 1 / 2 ) − 𝑋 ) ↑ 2 ) ) |
| 67 |
43 66
|
syl |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) = ( ( ( 1 / 2 ) − 𝑋 ) ↑ 2 ) ) |
| 68 |
67
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) ↑ 2 ) − ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) ) = ( ( ( 1 / 2 ) ↑ 2 ) − ( ( ( 1 / 2 ) − 𝑋 ) ↑ 2 ) ) ) |
| 69 |
58 65 68
|
3eqtr4d |
⊢ ( 𝜑 → ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ 𝑋 ) ) = ( ( ( 1 / 2 ) ↑ 2 ) − ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) ) ) |
| 70 |
69
|
oveq1d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ 𝑋 ) ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) = ( ( ( ( 1 / 2 ) ↑ 2 ) − ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) ) |
| 71 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 72 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 73 |
72
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 74 |
2 71 73
|
divcan4d |
⊢ ( 𝜑 → ( ( 𝐵 · 2 ) / 2 ) = 𝐵 ) |
| 75 |
2
|
times2d |
⊢ ( 𝜑 → ( 𝐵 · 2 ) = ( 𝐵 + 𝐵 ) ) |
| 76 |
75
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 · 2 ) / 2 ) = ( ( 𝐵 + 𝐵 ) / 2 ) ) |
| 77 |
74 76
|
eqtr3d |
⊢ ( 𝜑 → 𝐵 = ( ( 𝐵 + 𝐵 ) / 2 ) ) |
| 78 |
77 4
|
oveq12d |
⊢ ( 𝜑 → ( 𝐵 − 𝑀 ) = ( ( ( 𝐵 + 𝐵 ) / 2 ) − ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 79 |
2 2
|
addcld |
⊢ ( 𝜑 → ( 𝐵 + 𝐵 ) ∈ ℂ ) |
| 80 |
1 2
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 81 |
79 80 71 73
|
divsubdird |
⊢ ( 𝜑 → ( ( ( 𝐵 + 𝐵 ) − ( 𝐴 + 𝐵 ) ) / 2 ) = ( ( ( 𝐵 + 𝐵 ) / 2 ) − ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 82 |
2 1 2
|
pnpcan2d |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐵 ) − ( 𝐴 + 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 83 |
82
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐵 + 𝐵 ) − ( 𝐴 + 𝐵 ) ) / 2 ) = ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 84 |
78 81 83
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝐵 − 𝑀 ) = ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 85 |
13 71 73
|
divrec2d |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) = ( ( 1 / 2 ) · ( 𝐵 − 𝐴 ) ) ) |
| 86 |
84 85
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 − 𝑀 ) = ( ( 1 / 2 ) · ( 𝐵 − 𝐴 ) ) ) |
| 87 |
86
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝑀 ) ) = ( abs ‘ ( ( 1 / 2 ) · ( 𝐵 − 𝐴 ) ) ) ) |
| 88 |
40 13
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( ( 1 / 2 ) · ( 𝐵 − 𝐴 ) ) ) = ( ( abs ‘ ( 1 / 2 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 89 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 90 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
| 91 |
90
|
a1i |
⊢ ( 𝜑 → 0 < ( 1 / 2 ) ) |
| 92 |
89 42 91
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( 1 / 2 ) ) |
| 93 |
42 92
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 94 |
93
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 1 / 2 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) = ( ( 1 / 2 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 95 |
87 88 94
|
3eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝑀 ) ) = ( ( 1 / 2 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 96 |
95
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝑀 ) ) ↑ 2 ) = ( ( ( 1 / 2 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ↑ 2 ) ) |
| 97 |
40 15
|
sqmuld |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ↑ 2 ) = ( ( ( 1 / 2 ) ↑ 2 ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) ) |
| 98 |
96 97
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝑀 ) ) ↑ 2 ) = ( ( ( 1 / 2 ) ↑ 2 ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) ) |
| 99 |
40 16 13
|
subdird |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) − 𝑋 ) · ( 𝐵 − 𝐴 ) ) = ( ( ( 1 / 2 ) · ( 𝐵 − 𝐴 ) ) − ( 𝑋 · ( 𝐵 − 𝐴 ) ) ) ) |
| 100 |
86 31
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑀 ) − ( 𝐵 − 𝑃 ) ) = ( ( ( 1 / 2 ) · ( 𝐵 − 𝐴 ) ) − ( 𝑋 · ( 𝐵 − 𝐴 ) ) ) ) |
| 101 |
80
|
halfcld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℂ ) |
| 102 |
4 101
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 103 |
2 102 23
|
nnncan1d |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑀 ) − ( 𝐵 − 𝑃 ) ) = ( 𝑃 − 𝑀 ) ) |
| 104 |
99 100 103
|
3eqtr2rd |
⊢ ( 𝜑 → ( 𝑃 − 𝑀 ) = ( ( ( 1 / 2 ) − 𝑋 ) · ( 𝐵 − 𝐴 ) ) ) |
| 105 |
104
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑃 − 𝑀 ) ) = ( abs ‘ ( ( ( 1 / 2 ) − 𝑋 ) · ( 𝐵 − 𝐴 ) ) ) ) |
| 106 |
44 13
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 1 / 2 ) − 𝑋 ) · ( 𝐵 − 𝐴 ) ) ) = ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 107 |
105 106
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑃 − 𝑀 ) ) = ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 108 |
107
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) = ( ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ↑ 2 ) ) |
| 109 |
46 15
|
sqmuld |
⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ↑ 2 ) = ( ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) ) |
| 110 |
108 109
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) = ( ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) ) |
| 111 |
98 110
|
oveq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐵 − 𝑀 ) ) ↑ 2 ) − ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) = ( ( ( ( 1 / 2 ) ↑ 2 ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) − ( ( ( abs ‘ ( ( 1 / 2 ) − 𝑋 ) ) ↑ 2 ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) ) ) |
| 112 |
49 70 111
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐵 − 𝑀 ) ) ↑ 2 ) − ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) = ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ 𝑋 ) ) · ( ( abs ‘ ( 𝐵 − 𝐴 ) ) ↑ 2 ) ) ) |
| 113 |
38 112
|
eqtr4d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑃 − 𝐴 ) ) · ( abs ‘ ( 𝑃 − 𝐵 ) ) ) = ( ( ( abs ‘ ( 𝐵 − 𝑀 ) ) ↑ 2 ) − ( ( abs ‘ ( 𝑃 − 𝑀 ) ) ↑ 2 ) ) ) |