| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chordthmlem3.A |
|
| 2 |
|
chordthmlem3.B |
|
| 3 |
|
chordthmlem3.Q |
|
| 4 |
|
chordthmlem3.X |
|
| 5 |
|
chordthmlem3.M |
|
| 6 |
|
chordthmlem3.P |
|
| 7 |
|
chordthmlem3.ABequidistQ |
|
| 8 |
1 2
|
addcld |
|
| 9 |
8
|
halfcld |
|
| 10 |
5 9
|
eqeltrd |
|
| 11 |
3 10
|
subcld |
|
| 12 |
11
|
abscld |
|
| 13 |
12
|
recnd |
|
| 14 |
13
|
sqcld |
|
| 15 |
14
|
adantr |
|
| 16 |
15
|
addridd |
|
| 17 |
4
|
recnd |
|
| 18 |
17 1
|
mulcld |
|
| 19 |
|
1cnd |
|
| 20 |
19 17
|
subcld |
|
| 21 |
20 2
|
mulcld |
|
| 22 |
18 21
|
addcld |
|
| 23 |
6 22
|
eqeltrd |
|
| 24 |
23
|
adantr |
|
| 25 |
|
simpr |
|
| 26 |
24 25
|
subeq0bd |
|
| 27 |
26
|
abs00bd |
|
| 28 |
27
|
sq0id |
|
| 29 |
28
|
oveq2d |
|
| 30 |
3
|
adantr |
|
| 31 |
30 24
|
abssubd |
|
| 32 |
25
|
oveq2d |
|
| 33 |
32
|
fveq2d |
|
| 34 |
31 33
|
eqtr3d |
|
| 35 |
34
|
oveq1d |
|
| 36 |
16 29 35
|
3eqtr4rd |
|
| 37 |
23 10
|
subcld |
|
| 38 |
37
|
abscld |
|
| 39 |
38
|
recnd |
|
| 40 |
39
|
sqcld |
|
| 41 |
40
|
adantr |
|
| 42 |
41
|
addlidd |
|
| 43 |
3
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
43 44
|
subeq0bd |
|
| 46 |
45
|
abs00bd |
|
| 47 |
46
|
sq0id |
|
| 48 |
47
|
oveq1d |
|
| 49 |
44
|
oveq2d |
|
| 50 |
49
|
fveq2d |
|
| 51 |
50
|
oveq1d |
|
| 52 |
42 48 51
|
3eqtr4rd |
|
| 53 |
23
|
adantr |
|
| 54 |
3
|
adantr |
|
| 55 |
10
|
adantr |
|
| 56 |
|
simprl |
|
| 57 |
|
simprr |
|
| 58 |
|
eqid |
|
| 59 |
1
|
adantr |
|
| 60 |
2
|
adantr |
|
| 61 |
4
|
adantr |
|
| 62 |
5
|
adantr |
|
| 63 |
6
|
adantr |
|
| 64 |
7
|
adantr |
|
| 65 |
58 59 60 54 61 62 63 64 56 57
|
chordthmlem2 |
|
| 66 |
|
eqid |
|
| 67 |
|
eqid |
|
| 68 |
|
eqid |
|
| 69 |
|
eqid |
|
| 70 |
58 66 67 68 69
|
pythag |
|
| 71 |
53 54 55 56 57 65 70
|
syl321anc |
|
| 72 |
36 52 71
|
pm2.61da2ne |
|