Metamath Proof Explorer


Theorem chordthmlem3

Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ2 = QM2 + PM2. This follows from chordthmlem2 and the Pythagorean theorem ( pythag ) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses chordthmlem3.A φ A
chordthmlem3.B φ B
chordthmlem3.Q φ Q
chordthmlem3.X φ X
chordthmlem3.M φ M = A + B 2
chordthmlem3.P φ P = X A + 1 X B
chordthmlem3.ABequidistQ φ A Q = B Q
Assertion chordthmlem3 φ P Q 2 = Q M 2 + P M 2

Proof

Step Hyp Ref Expression
1 chordthmlem3.A φ A
2 chordthmlem3.B φ B
3 chordthmlem3.Q φ Q
4 chordthmlem3.X φ X
5 chordthmlem3.M φ M = A + B 2
6 chordthmlem3.P φ P = X A + 1 X B
7 chordthmlem3.ABequidistQ φ A Q = B Q
8 1 2 addcld φ A + B
9 8 halfcld φ A + B 2
10 5 9 eqeltrd φ M
11 3 10 subcld φ Q M
12 11 abscld φ Q M
13 12 recnd φ Q M
14 13 sqcld φ Q M 2
15 14 adantr φ P = M Q M 2
16 15 addid1d φ P = M Q M 2 + 0 = Q M 2
17 4 recnd φ X
18 17 1 mulcld φ X A
19 1cnd φ 1
20 19 17 subcld φ 1 X
21 20 2 mulcld φ 1 X B
22 18 21 addcld φ X A + 1 X B
23 6 22 eqeltrd φ P
24 23 adantr φ P = M P
25 simpr φ P = M P = M
26 24 25 subeq0bd φ P = M P M = 0
27 26 abs00bd φ P = M P M = 0
28 27 sq0id φ P = M P M 2 = 0
29 28 oveq2d φ P = M Q M 2 + P M 2 = Q M 2 + 0
30 3 adantr φ P = M Q
31 30 24 abssubd φ P = M Q P = P Q
32 25 oveq2d φ P = M Q P = Q M
33 32 fveq2d φ P = M Q P = Q M
34 31 33 eqtr3d φ P = M P Q = Q M
35 34 oveq1d φ P = M P Q 2 = Q M 2
36 16 29 35 3eqtr4rd φ P = M P Q 2 = Q M 2 + P M 2
37 23 10 subcld φ P M
38 37 abscld φ P M
39 38 recnd φ P M
40 39 sqcld φ P M 2
41 40 adantr φ Q = M P M 2
42 41 addid2d φ Q = M 0 + P M 2 = P M 2
43 3 adantr φ Q = M Q
44 simpr φ Q = M Q = M
45 43 44 subeq0bd φ Q = M Q M = 0
46 45 abs00bd φ Q = M Q M = 0
47 46 sq0id φ Q = M Q M 2 = 0
48 47 oveq1d φ Q = M Q M 2 + P M 2 = 0 + P M 2
49 44 oveq2d φ Q = M P Q = P M
50 49 fveq2d φ Q = M P Q = P M
51 50 oveq1d φ Q = M P Q 2 = P M 2
52 42 48 51 3eqtr4rd φ Q = M P Q 2 = Q M 2 + P M 2
53 23 adantr φ P M Q M P
54 3 adantr φ P M Q M Q
55 10 adantr φ P M Q M M
56 simprl φ P M Q M P M
57 simprr φ P M Q M Q M
58 eqid x 0 , y 0 log y x = x 0 , y 0 log y x
59 1 adantr φ P M Q M A
60 2 adantr φ P M Q M B
61 4 adantr φ P M Q M X
62 5 adantr φ P M Q M M = A + B 2
63 6 adantr φ P M Q M P = X A + 1 X B
64 7 adantr φ P M Q M A Q = B Q
65 58 59 60 54 61 62 63 64 56 57 chordthmlem2 φ P M Q M Q M x 0 , y 0 log y x P M π 2 π 2
66 eqid Q M = Q M
67 eqid P M = P M
68 eqid P Q = P Q
69 eqid Q M x 0 , y 0 log y x P M = Q M x 0 , y 0 log y x P M
70 58 66 67 68 69 pythag P Q M P M Q M Q M x 0 , y 0 log y x P M π 2 π 2 P Q 2 = Q M 2 + P M 2
71 53 54 55 56 57 65 70 syl321anc φ P M Q M P Q 2 = Q M 2 + P M 2
72 36 52 71 pm2.61da2ne φ P Q 2 = Q M 2 + P M 2