| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lawcos.1 |
|
| 2 |
|
lawcos.2 |
|
| 3 |
|
lawcos.3 |
|
| 4 |
|
lawcos.4 |
|
| 5 |
|
lawcos.5 |
|
| 6 |
1 2 3 4 5
|
lawcos |
|
| 7 |
6
|
3adant3 |
|
| 8 |
|
elpri |
|
| 9 |
|
fveq2 |
|
| 10 |
|
coshalfpi |
|
| 11 |
9 10
|
eqtrdi |
|
| 12 |
|
fveq2 |
|
| 13 |
|
cosneghalfpi |
|
| 14 |
12 13
|
eqtrdi |
|
| 15 |
11 14
|
jaoi |
|
| 16 |
8 15
|
syl |
|
| 17 |
16
|
3ad2ant3 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
subcl |
|
| 20 |
19
|
3adant1 |
|
| 21 |
20
|
3ad2ant1 |
|
| 22 |
21
|
abscld |
|
| 23 |
22
|
recnd |
|
| 24 |
2 23
|
eqeltrid |
|
| 25 |
|
subcl |
|
| 26 |
25
|
3adant2 |
|
| 27 |
26
|
3ad2ant1 |
|
| 28 |
27
|
abscld |
|
| 29 |
28
|
recnd |
|
| 30 |
3 29
|
eqeltrid |
|
| 31 |
24 30
|
mulcld |
|
| 32 |
31
|
mul01d |
|
| 33 |
18 32
|
eqtrd |
|
| 34 |
33
|
oveq2d |
|
| 35 |
|
2t0e0 |
|
| 36 |
34 35
|
eqtrdi |
|
| 37 |
36
|
oveq2d |
|
| 38 |
24
|
sqcld |
|
| 39 |
30
|
sqcld |
|
| 40 |
38 39
|
addcld |
|
| 41 |
40
|
subid1d |
|
| 42 |
7 37 41
|
3eqtrd |
|