| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ang.1 |
|
| 2 |
|
simpl3 |
|
| 3 |
|
simpl2 |
|
| 4 |
2 3
|
subcld |
|
| 5 |
|
simpr2 |
|
| 6 |
5
|
necomd |
|
| 7 |
2 3 6
|
subne0d |
|
| 8 |
|
simpl1 |
|
| 9 |
8 3
|
subcld |
|
| 10 |
|
simpr1 |
|
| 11 |
8 3 10
|
subne0d |
|
| 12 |
1
|
angneg |
|
| 13 |
4 7 9 11 12
|
syl22anc |
|
| 14 |
2 3
|
negsubdi2d |
|
| 15 |
3 2 8
|
nnncan2d |
|
| 16 |
14 15
|
eqtr4d |
|
| 17 |
8 3
|
negsubdi2d |
|
| 18 |
16 17
|
oveq12d |
|
| 19 |
13 18
|
eqtr3d |
|
| 20 |
8 2
|
subcld |
|
| 21 |
|
simpr3 |
|
| 22 |
8 2 21
|
subne0d |
|
| 23 |
3 2
|
subcld |
|
| 24 |
3 2 5
|
subne0d |
|
| 25 |
1
|
angneg |
|
| 26 |
20 22 23 24 25
|
syl22anc |
|
| 27 |
8 2
|
negsubdi2d |
|
| 28 |
3 2
|
negsubdi2d |
|
| 29 |
2 3 8
|
nnncan2d |
|
| 30 |
28 29
|
eqtr4d |
|
| 31 |
27 30
|
oveq12d |
|
| 32 |
26 31
|
eqtr3d |
|
| 33 |
19 32
|
oveq12d |
|
| 34 |
33
|
oveq1d |
|
| 35 |
3 8
|
subcld |
|
| 36 |
10
|
necomd |
|
| 37 |
3 8 36
|
subne0d |
|
| 38 |
2 8
|
subcld |
|
| 39 |
21
|
necomd |
|
| 40 |
2 8 39
|
subne0d |
|
| 41 |
3 2 8 5
|
subneintr2d |
|
| 42 |
1
|
ang180lem5 |
|
| 43 |
35 37 38 40 41 42
|
syl221anc |
|
| 44 |
34 43
|
eqeltrd |
|