Metamath Proof Explorer


Theorem ang180lem5

Description: Lemma for ang180 : Reduce the statement to two variables. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypothesis ang.1 F=x0,y0logyx
Assertion ang180lem5 AA0BB0ABABFA+BFBA+AFBππ

Proof

Step Hyp Ref Expression
1 ang.1 F=x0,y0logyx
2 simp1l AA0BB0ABA
3 1cnd AA0BB0AB1
4 simp2l AA0BB0ABB
5 simp1r AA0BB0ABA0
6 4 2 5 divcld AA0BB0ABBA
7 2 3 6 subdid AA0BB0ABA1BA=A1ABA
8 2 mulridd AA0BB0ABA1=A
9 4 2 5 divcan2d AA0BB0ABABA=B
10 8 9 oveq12d AA0BB0ABA1ABA=AB
11 7 10 eqtrd AA0BB0ABA1BA=AB
12 11 8 oveq12d AA0BB0ABA1BAFA1=ABFA
13 3 6 subcld AA0BB0AB1BA
14 simp3 AA0BB0ABAB
15 14 necomd AA0BB0ABBA
16 4 2 5 15 divne1d AA0BB0ABBA1
17 16 necomd AA0BB0AB1BA
18 3 6 17 subne0d AA0BB0AB1BA0
19 ax-1ne0 10
20 19 a1i AA0BB0AB10
21 1 angcan 1BA1BA0110AA0A1BAFA1=1BAF1
22 13 18 3 20 2 5 21 syl222anc AA0BB0ABA1BAFA1=1BAF1
23 12 22 eqtr3d AA0BB0ABABFA=1BAF1
24 2 6 3 subdid AA0BB0ABABA1=ABAA1
25 9 8 oveq12d AA0BB0ABABAA1=BA
26 24 25 eqtrd AA0BB0ABABA1=BA
27 9 26 oveq12d AA0BB0ABABAFABA1=BFBA
28 simp2r AA0BB0ABB0
29 4 2 28 5 divne0d AA0BB0ABBA0
30 6 3 subcld AA0BB0ABBA1
31 6 3 16 subne0d AA0BB0ABBA10
32 1 angcan BABA0BA1BA10AA0ABAFABA1=BAFBA1
33 6 29 30 31 2 5 32 syl222anc AA0BB0ABABAFABA1=BAFBA1
34 27 33 eqtr3d AA0BB0ABBFBA=BAFBA1
35 23 34 oveq12d AA0BB0ABABFA+BFBA=1BAF1+BAFBA1
36 8 9 oveq12d AA0BB0ABA1FABA=AFB
37 1 angcan 110BABA0AA0A1FABA=1FBA
38 3 20 6 29 2 5 37 syl222anc AA0BB0ABA1FABA=1FBA
39 36 38 eqtr3d AA0BB0ABAFB=1FBA
40 35 39 oveq12d AA0BB0ABABFA+BFBA+AFB=1BAF1+BAFBA1+1FBA
41 1 ang180lem4 BABA0BA11BAF1+BAFBA1+1FBAππ
42 6 29 16 41 syl3anc AA0BB0AB1BAF1+BAFBA1+1FBAππ
43 40 42 eqeltrd AA0BB0ABABFA+BFBA+AFBππ