| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ang.1 |
|
| 2 |
|
simp1l |
|
| 3 |
|
1cnd |
|
| 4 |
|
simp2l |
|
| 5 |
|
simp1r |
|
| 6 |
4 2 5
|
divcld |
|
| 7 |
2 3 6
|
subdid |
|
| 8 |
2
|
mulridd |
|
| 9 |
4 2 5
|
divcan2d |
|
| 10 |
8 9
|
oveq12d |
|
| 11 |
7 10
|
eqtrd |
|
| 12 |
11 8
|
oveq12d |
|
| 13 |
3 6
|
subcld |
|
| 14 |
|
simp3 |
|
| 15 |
14
|
necomd |
|
| 16 |
4 2 5 15
|
divne1d |
|
| 17 |
16
|
necomd |
|
| 18 |
3 6 17
|
subne0d |
|
| 19 |
|
ax-1ne0 |
|
| 20 |
19
|
a1i |
|
| 21 |
1
|
angcan |
|
| 22 |
13 18 3 20 2 5 21
|
syl222anc |
|
| 23 |
12 22
|
eqtr3d |
|
| 24 |
2 6 3
|
subdid |
|
| 25 |
9 8
|
oveq12d |
|
| 26 |
24 25
|
eqtrd |
|
| 27 |
9 26
|
oveq12d |
|
| 28 |
|
simp2r |
|
| 29 |
4 2 28 5
|
divne0d |
|
| 30 |
6 3
|
subcld |
|
| 31 |
6 3 16
|
subne0d |
|
| 32 |
1
|
angcan |
|
| 33 |
6 29 30 31 2 5 32
|
syl222anc |
|
| 34 |
27 33
|
eqtr3d |
|
| 35 |
23 34
|
oveq12d |
|
| 36 |
8 9
|
oveq12d |
|
| 37 |
1
|
angcan |
|
| 38 |
3 20 6 29 2 5 37
|
syl222anc |
|
| 39 |
36 38
|
eqtr3d |
|
| 40 |
35 39
|
oveq12d |
|
| 41 |
1
|
ang180lem4 |
|
| 42 |
6 29 16 41
|
syl3anc |
|
| 43 |
40 42
|
eqeltrd |
|