Metamath Proof Explorer


Theorem cosangneg2d

Description: The cosine of the angle between X and -u Y is the negative of that between X and Y . If A, B and C are collinear points, this implies that the cosines of DBA and DBC sum to zero, i.e., that DBA and DBC are supplementary. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses ang.1 F=x0,y0logyx
cosangneg2d.1 φX
cosangneg2d.2 φX0
cosangneg2d.3 φY
cosangneg2d.4 φY0
Assertion cosangneg2d φcosXFY=cosXFY

Proof

Step Hyp Ref Expression
1 ang.1 F=x0,y0logyx
2 cosangneg2d.1 φX
3 cosangneg2d.2 φX0
4 cosangneg2d.3 φY
5 cosangneg2d.4 φY0
6 4 2 3 divcld φYX
7 6 recld φYX
8 7 recnd φYX
9 6 abscld φYX
10 9 recnd φYX
11 4 2 5 3 divne0d φYX0
12 6 11 absne0d φYX0
13 8 10 12 divnegd φYXYX=YXYX
14 1 2 3 4 5 angvald φXFY=logYX
15 14 fveq2d φcosXFY=coslogYX
16 6 11 cosargd φcoslogYX=YXYX
17 15 16 eqtrd φcosXFY=YXYX
18 17 negeqd φcosXFY=YXYX
19 4 negcld φY
20 4 5 negne0d φY0
21 1 2 3 19 20 angvald φXFY=logYX
22 21 fveq2d φcosXFY=coslogYX
23 19 2 3 divcld φYX
24 19 2 20 3 divne0d φYX0
25 23 24 cosargd φcoslogYX=YXYX
26 4 2 3 divnegd φYX=YX
27 26 fveq2d φYX=YX
28 6 renegd φYX=YX
29 27 28 eqtr3d φYX=YX
30 26 fveq2d φYX=YX
31 6 absnegd φYX=YX
32 30 31 eqtr3d φYX=YX
33 29 32 oveq12d φYXYX=YXYX
34 22 25 33 3eqtrd φcosXFY=YXYX
35 13 18 34 3eqtr4rd φcosXFY=cosXFY