Metamath Proof Explorer


Theorem cosangneg2d

Description: The cosine of the angle between X and -u Y is the negative of that between X and Y . If A, B and C are collinear points, this implies that the cosines of DBA and DBC sum to zero, i.e., that DBA and DBC are supplementary. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses ang.1 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) )
cosangneg2d.1 ( 𝜑𝑋 ∈ ℂ )
cosangneg2d.2 ( 𝜑𝑋 ≠ 0 )
cosangneg2d.3 ( 𝜑𝑌 ∈ ℂ )
cosangneg2d.4 ( 𝜑𝑌 ≠ 0 )
Assertion cosangneg2d ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 - 𝑌 ) ) = - ( cos ‘ ( 𝑋 𝐹 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 ang.1 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) )
2 cosangneg2d.1 ( 𝜑𝑋 ∈ ℂ )
3 cosangneg2d.2 ( 𝜑𝑋 ≠ 0 )
4 cosangneg2d.3 ( 𝜑𝑌 ∈ ℂ )
5 cosangneg2d.4 ( 𝜑𝑌 ≠ 0 )
6 4 2 3 divcld ( 𝜑 → ( 𝑌 / 𝑋 ) ∈ ℂ )
7 6 recld ( 𝜑 → ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ∈ ℝ )
8 7 recnd ( 𝜑 → ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ∈ ℂ )
9 6 abscld ( 𝜑 → ( abs ‘ ( 𝑌 / 𝑋 ) ) ∈ ℝ )
10 9 recnd ( 𝜑 → ( abs ‘ ( 𝑌 / 𝑋 ) ) ∈ ℂ )
11 4 2 5 3 divne0d ( 𝜑 → ( 𝑌 / 𝑋 ) ≠ 0 )
12 6 11 absne0d ( 𝜑 → ( abs ‘ ( 𝑌 / 𝑋 ) ) ≠ 0 )
13 8 10 12 divnegd ( 𝜑 → - ( ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) = ( - ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) )
14 1 2 3 4 5 angvald ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) )
15 14 fveq2d ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 𝑌 ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ) )
16 6 11 cosargd ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ) = ( ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) )
17 15 16 eqtrd ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 𝑌 ) ) = ( ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) )
18 17 negeqd ( 𝜑 → - ( cos ‘ ( 𝑋 𝐹 𝑌 ) ) = - ( ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) )
19 4 negcld ( 𝜑 → - 𝑌 ∈ ℂ )
20 4 5 negne0d ( 𝜑 → - 𝑌 ≠ 0 )
21 1 2 3 19 20 angvald ( 𝜑 → ( 𝑋 𝐹 - 𝑌 ) = ( ℑ ‘ ( log ‘ ( - 𝑌 / 𝑋 ) ) ) )
22 21 fveq2d ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 - 𝑌 ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ ( - 𝑌 / 𝑋 ) ) ) ) )
23 19 2 3 divcld ( 𝜑 → ( - 𝑌 / 𝑋 ) ∈ ℂ )
24 19 2 20 3 divne0d ( 𝜑 → ( - 𝑌 / 𝑋 ) ≠ 0 )
25 23 24 cosargd ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ ( - 𝑌 / 𝑋 ) ) ) ) = ( ( ℜ ‘ ( - 𝑌 / 𝑋 ) ) / ( abs ‘ ( - 𝑌 / 𝑋 ) ) ) )
26 4 2 3 divnegd ( 𝜑 → - ( 𝑌 / 𝑋 ) = ( - 𝑌 / 𝑋 ) )
27 26 fveq2d ( 𝜑 → ( ℜ ‘ - ( 𝑌 / 𝑋 ) ) = ( ℜ ‘ ( - 𝑌 / 𝑋 ) ) )
28 6 renegd ( 𝜑 → ( ℜ ‘ - ( 𝑌 / 𝑋 ) ) = - ( ℜ ‘ ( 𝑌 / 𝑋 ) ) )
29 27 28 eqtr3d ( 𝜑 → ( ℜ ‘ ( - 𝑌 / 𝑋 ) ) = - ( ℜ ‘ ( 𝑌 / 𝑋 ) ) )
30 26 fveq2d ( 𝜑 → ( abs ‘ - ( 𝑌 / 𝑋 ) ) = ( abs ‘ ( - 𝑌 / 𝑋 ) ) )
31 6 absnegd ( 𝜑 → ( abs ‘ - ( 𝑌 / 𝑋 ) ) = ( abs ‘ ( 𝑌 / 𝑋 ) ) )
32 30 31 eqtr3d ( 𝜑 → ( abs ‘ ( - 𝑌 / 𝑋 ) ) = ( abs ‘ ( 𝑌 / 𝑋 ) ) )
33 29 32 oveq12d ( 𝜑 → ( ( ℜ ‘ ( - 𝑌 / 𝑋 ) ) / ( abs ‘ ( - 𝑌 / 𝑋 ) ) ) = ( - ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) )
34 22 25 33 3eqtrd ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 - 𝑌 ) ) = ( - ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) )
35 13 18 34 3eqtr4rd ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 - 𝑌 ) ) = - ( cos ‘ ( 𝑋 𝐹 𝑌 ) ) )