Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) |
2 |
|
cosangneg2d.1 |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
3 |
|
cosangneg2d.2 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
4 |
|
cosangneg2d.3 |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
5 |
|
cosangneg2d.4 |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
6 |
4 2 3
|
divcld |
⊢ ( 𝜑 → ( 𝑌 / 𝑋 ) ∈ ℂ ) |
7 |
6
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ∈ ℂ ) |
9 |
6
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝑌 / 𝑋 ) ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑌 / 𝑋 ) ) ∈ ℂ ) |
11 |
4 2 5 3
|
divne0d |
⊢ ( 𝜑 → ( 𝑌 / 𝑋 ) ≠ 0 ) |
12 |
6 11
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑌 / 𝑋 ) ) ≠ 0 ) |
13 |
8 10 12
|
divnegd |
⊢ ( 𝜑 → - ( ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) = ( - ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) ) |
14 |
1 2 3 4 5
|
angvald |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 𝑌 ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ) ) |
16 |
6 11
|
cosargd |
⊢ ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝑌 / 𝑋 ) ) ) ) = ( ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) ) |
17 |
15 16
|
eqtrd |
⊢ ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 𝑌 ) ) = ( ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) ) |
18 |
17
|
negeqd |
⊢ ( 𝜑 → - ( cos ‘ ( 𝑋 𝐹 𝑌 ) ) = - ( ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) ) |
19 |
4
|
negcld |
⊢ ( 𝜑 → - 𝑌 ∈ ℂ ) |
20 |
4 5
|
negne0d |
⊢ ( 𝜑 → - 𝑌 ≠ 0 ) |
21 |
1 2 3 19 20
|
angvald |
⊢ ( 𝜑 → ( 𝑋 𝐹 - 𝑌 ) = ( ℑ ‘ ( log ‘ ( - 𝑌 / 𝑋 ) ) ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 - 𝑌 ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ ( - 𝑌 / 𝑋 ) ) ) ) ) |
23 |
19 2 3
|
divcld |
⊢ ( 𝜑 → ( - 𝑌 / 𝑋 ) ∈ ℂ ) |
24 |
19 2 20 3
|
divne0d |
⊢ ( 𝜑 → ( - 𝑌 / 𝑋 ) ≠ 0 ) |
25 |
23 24
|
cosargd |
⊢ ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ ( - 𝑌 / 𝑋 ) ) ) ) = ( ( ℜ ‘ ( - 𝑌 / 𝑋 ) ) / ( abs ‘ ( - 𝑌 / 𝑋 ) ) ) ) |
26 |
4 2 3
|
divnegd |
⊢ ( 𝜑 → - ( 𝑌 / 𝑋 ) = ( - 𝑌 / 𝑋 ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( ℜ ‘ - ( 𝑌 / 𝑋 ) ) = ( ℜ ‘ ( - 𝑌 / 𝑋 ) ) ) |
28 |
6
|
renegd |
⊢ ( 𝜑 → ( ℜ ‘ - ( 𝑌 / 𝑋 ) ) = - ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ) |
29 |
27 28
|
eqtr3d |
⊢ ( 𝜑 → ( ℜ ‘ ( - 𝑌 / 𝑋 ) ) = - ( ℜ ‘ ( 𝑌 / 𝑋 ) ) ) |
30 |
26
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ - ( 𝑌 / 𝑋 ) ) = ( abs ‘ ( - 𝑌 / 𝑋 ) ) ) |
31 |
6
|
absnegd |
⊢ ( 𝜑 → ( abs ‘ - ( 𝑌 / 𝑋 ) ) = ( abs ‘ ( 𝑌 / 𝑋 ) ) ) |
32 |
30 31
|
eqtr3d |
⊢ ( 𝜑 → ( abs ‘ ( - 𝑌 / 𝑋 ) ) = ( abs ‘ ( 𝑌 / 𝑋 ) ) ) |
33 |
29 32
|
oveq12d |
⊢ ( 𝜑 → ( ( ℜ ‘ ( - 𝑌 / 𝑋 ) ) / ( abs ‘ ( - 𝑌 / 𝑋 ) ) ) = ( - ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) ) |
34 |
22 25 33
|
3eqtrd |
⊢ ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 - 𝑌 ) ) = ( - ( ℜ ‘ ( 𝑌 / 𝑋 ) ) / ( abs ‘ ( 𝑌 / 𝑋 ) ) ) ) |
35 |
13 18 34
|
3eqtr4rd |
⊢ ( 𝜑 → ( cos ‘ ( 𝑋 𝐹 - 𝑌 ) ) = - ( cos ‘ ( 𝑋 𝐹 𝑌 ) ) ) |