| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 2 |
|
cosangneg2d.1 |
|- ( ph -> X e. CC ) |
| 3 |
|
cosangneg2d.2 |
|- ( ph -> X =/= 0 ) |
| 4 |
|
cosangneg2d.3 |
|- ( ph -> Y e. CC ) |
| 5 |
|
cosangneg2d.4 |
|- ( ph -> Y =/= 0 ) |
| 6 |
4 2 3
|
divcld |
|- ( ph -> ( Y / X ) e. CC ) |
| 7 |
6
|
recld |
|- ( ph -> ( Re ` ( Y / X ) ) e. RR ) |
| 8 |
7
|
recnd |
|- ( ph -> ( Re ` ( Y / X ) ) e. CC ) |
| 9 |
6
|
abscld |
|- ( ph -> ( abs ` ( Y / X ) ) e. RR ) |
| 10 |
9
|
recnd |
|- ( ph -> ( abs ` ( Y / X ) ) e. CC ) |
| 11 |
4 2 5 3
|
divne0d |
|- ( ph -> ( Y / X ) =/= 0 ) |
| 12 |
6 11
|
absne0d |
|- ( ph -> ( abs ` ( Y / X ) ) =/= 0 ) |
| 13 |
8 10 12
|
divnegd |
|- ( ph -> -u ( ( Re ` ( Y / X ) ) / ( abs ` ( Y / X ) ) ) = ( -u ( Re ` ( Y / X ) ) / ( abs ` ( Y / X ) ) ) ) |
| 14 |
1 2 3 4 5
|
angvald |
|- ( ph -> ( X F Y ) = ( Im ` ( log ` ( Y / X ) ) ) ) |
| 15 |
14
|
fveq2d |
|- ( ph -> ( cos ` ( X F Y ) ) = ( cos ` ( Im ` ( log ` ( Y / X ) ) ) ) ) |
| 16 |
6 11
|
cosargd |
|- ( ph -> ( cos ` ( Im ` ( log ` ( Y / X ) ) ) ) = ( ( Re ` ( Y / X ) ) / ( abs ` ( Y / X ) ) ) ) |
| 17 |
15 16
|
eqtrd |
|- ( ph -> ( cos ` ( X F Y ) ) = ( ( Re ` ( Y / X ) ) / ( abs ` ( Y / X ) ) ) ) |
| 18 |
17
|
negeqd |
|- ( ph -> -u ( cos ` ( X F Y ) ) = -u ( ( Re ` ( Y / X ) ) / ( abs ` ( Y / X ) ) ) ) |
| 19 |
4
|
negcld |
|- ( ph -> -u Y e. CC ) |
| 20 |
4 5
|
negne0d |
|- ( ph -> -u Y =/= 0 ) |
| 21 |
1 2 3 19 20
|
angvald |
|- ( ph -> ( X F -u Y ) = ( Im ` ( log ` ( -u Y / X ) ) ) ) |
| 22 |
21
|
fveq2d |
|- ( ph -> ( cos ` ( X F -u Y ) ) = ( cos ` ( Im ` ( log ` ( -u Y / X ) ) ) ) ) |
| 23 |
19 2 3
|
divcld |
|- ( ph -> ( -u Y / X ) e. CC ) |
| 24 |
19 2 20 3
|
divne0d |
|- ( ph -> ( -u Y / X ) =/= 0 ) |
| 25 |
23 24
|
cosargd |
|- ( ph -> ( cos ` ( Im ` ( log ` ( -u Y / X ) ) ) ) = ( ( Re ` ( -u Y / X ) ) / ( abs ` ( -u Y / X ) ) ) ) |
| 26 |
4 2 3
|
divnegd |
|- ( ph -> -u ( Y / X ) = ( -u Y / X ) ) |
| 27 |
26
|
fveq2d |
|- ( ph -> ( Re ` -u ( Y / X ) ) = ( Re ` ( -u Y / X ) ) ) |
| 28 |
6
|
renegd |
|- ( ph -> ( Re ` -u ( Y / X ) ) = -u ( Re ` ( Y / X ) ) ) |
| 29 |
27 28
|
eqtr3d |
|- ( ph -> ( Re ` ( -u Y / X ) ) = -u ( Re ` ( Y / X ) ) ) |
| 30 |
26
|
fveq2d |
|- ( ph -> ( abs ` -u ( Y / X ) ) = ( abs ` ( -u Y / X ) ) ) |
| 31 |
6
|
absnegd |
|- ( ph -> ( abs ` -u ( Y / X ) ) = ( abs ` ( Y / X ) ) ) |
| 32 |
30 31
|
eqtr3d |
|- ( ph -> ( abs ` ( -u Y / X ) ) = ( abs ` ( Y / X ) ) ) |
| 33 |
29 32
|
oveq12d |
|- ( ph -> ( ( Re ` ( -u Y / X ) ) / ( abs ` ( -u Y / X ) ) ) = ( -u ( Re ` ( Y / X ) ) / ( abs ` ( Y / X ) ) ) ) |
| 34 |
22 25 33
|
3eqtrd |
|- ( ph -> ( cos ` ( X F -u Y ) ) = ( -u ( Re ` ( Y / X ) ) / ( abs ` ( Y / X ) ) ) ) |
| 35 |
13 18 34
|
3eqtr4rd |
|- ( ph -> ( cos ` ( X F -u Y ) ) = -u ( cos ` ( X F Y ) ) ) |