Step |
Hyp |
Ref |
Expression |
1 |
|
affineequiv.a |
|
2 |
|
affineequiv.b |
|
3 |
|
affineequiv.c |
|
4 |
|
affineequiv.d |
|
5 |
|
1cnd |
|
6 |
5 4
|
subcld |
|
7 |
6 2
|
mulcld |
|
8 |
4 3
|
mulcld |
|
9 |
7 8
|
addcomd |
|
10 |
9
|
eqeq2d |
|
11 |
3 1 2 4
|
affineequiv |
|
12 |
1 2
|
negsubdi2d |
|
13 |
12
|
eqcomd |
|
14 |
13
|
eqeq1d |
|
15 |
3 2
|
negsubdi2d |
|
16 |
15
|
eqcomd |
|
17 |
16
|
oveq2d |
|
18 |
3 2
|
subcld |
|
19 |
4 18
|
mulneg2d |
|
20 |
17 19
|
eqtrd |
|
21 |
20
|
eqeq2d |
|
22 |
1 2
|
subcld |
|
23 |
4 18
|
mulcld |
|
24 |
22 23
|
neg11ad |
|
25 |
14 21 24
|
3bitrd |
|
26 |
10 11 25
|
3bitrd |
|