| Step |
Hyp |
Ref |
Expression |
| 1 |
|
affineequiv.a |
|- ( ph -> A e. CC ) |
| 2 |
|
affineequiv.b |
|- ( ph -> B e. CC ) |
| 3 |
|
affineequiv.c |
|- ( ph -> C e. CC ) |
| 4 |
|
affineequiv.d |
|- ( ph -> D e. CC ) |
| 5 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 6 |
5 4
|
subcld |
|- ( ph -> ( 1 - D ) e. CC ) |
| 7 |
6 2
|
mulcld |
|- ( ph -> ( ( 1 - D ) x. B ) e. CC ) |
| 8 |
4 3
|
mulcld |
|- ( ph -> ( D x. C ) e. CC ) |
| 9 |
7 8
|
addcomd |
|- ( ph -> ( ( ( 1 - D ) x. B ) + ( D x. C ) ) = ( ( D x. C ) + ( ( 1 - D ) x. B ) ) ) |
| 10 |
9
|
eqeq2d |
|- ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> A = ( ( D x. C ) + ( ( 1 - D ) x. B ) ) ) ) |
| 11 |
3 1 2 4
|
affineequiv |
|- ( ph -> ( A = ( ( D x. C ) + ( ( 1 - D ) x. B ) ) <-> ( B - A ) = ( D x. ( B - C ) ) ) ) |
| 12 |
1 2
|
negsubdi2d |
|- ( ph -> -u ( A - B ) = ( B - A ) ) |
| 13 |
12
|
eqcomd |
|- ( ph -> ( B - A ) = -u ( A - B ) ) |
| 14 |
13
|
eqeq1d |
|- ( ph -> ( ( B - A ) = ( D x. ( B - C ) ) <-> -u ( A - B ) = ( D x. ( B - C ) ) ) ) |
| 15 |
3 2
|
negsubdi2d |
|- ( ph -> -u ( C - B ) = ( B - C ) ) |
| 16 |
15
|
eqcomd |
|- ( ph -> ( B - C ) = -u ( C - B ) ) |
| 17 |
16
|
oveq2d |
|- ( ph -> ( D x. ( B - C ) ) = ( D x. -u ( C - B ) ) ) |
| 18 |
3 2
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
| 19 |
4 18
|
mulneg2d |
|- ( ph -> ( D x. -u ( C - B ) ) = -u ( D x. ( C - B ) ) ) |
| 20 |
17 19
|
eqtrd |
|- ( ph -> ( D x. ( B - C ) ) = -u ( D x. ( C - B ) ) ) |
| 21 |
20
|
eqeq2d |
|- ( ph -> ( -u ( A - B ) = ( D x. ( B - C ) ) <-> -u ( A - B ) = -u ( D x. ( C - B ) ) ) ) |
| 22 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 23 |
4 18
|
mulcld |
|- ( ph -> ( D x. ( C - B ) ) e. CC ) |
| 24 |
22 23
|
neg11ad |
|- ( ph -> ( -u ( A - B ) = -u ( D x. ( C - B ) ) <-> ( A - B ) = ( D x. ( C - B ) ) ) ) |
| 25 |
14 21 24
|
3bitrd |
|- ( ph -> ( ( B - A ) = ( D x. ( B - C ) ) <-> ( A - B ) = ( D x. ( C - B ) ) ) ) |
| 26 |
10 11 25
|
3bitrd |
|- ( ph -> ( A = ( ( ( 1 - D ) x. B ) + ( D x. C ) ) <-> ( A - B ) = ( D x. ( C - B ) ) ) ) |