| Step | Hyp | Ref | Expression | 
						
							| 1 |  | affinecomb1.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | affinecomb1.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | affinecomb1.c |  |-  ( ph -> C e. RR ) | 
						
							| 4 |  | affinecomb1.d |  |-  ( ph -> B =/= C ) | 
						
							| 5 |  | affinecomb1.e |  |-  ( ph -> E e. RR ) | 
						
							| 6 |  | affinecomb1.f |  |-  ( ph -> F e. RR ) | 
						
							| 7 |  | affinecomb1.g |  |-  ( ph -> G e. RR ) | 
						
							| 8 |  | eqid |  |-  ( ( G - F ) / ( C - B ) ) = ( ( G - F ) / ( C - B ) ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | affinecomb1 |  |-  ( ph -> ( E. t e. RR ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) <-> E = ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) ) | 
						
							| 10 | 5 | recnd |  |-  ( ph -> E e. CC ) | 
						
							| 11 | 7 | recnd |  |-  ( ph -> G e. CC ) | 
						
							| 12 | 6 | recnd |  |-  ( ph -> F e. CC ) | 
						
							| 13 | 11 12 | subcld |  |-  ( ph -> ( G - F ) e. CC ) | 
						
							| 14 | 3 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 15 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 16 | 14 15 | subcld |  |-  ( ph -> ( C - B ) e. CC ) | 
						
							| 17 | 4 | necomd |  |-  ( ph -> C =/= B ) | 
						
							| 18 | 14 15 17 | subne0d |  |-  ( ph -> ( C - B ) =/= 0 ) | 
						
							| 19 | 13 16 18 | divcld |  |-  ( ph -> ( ( G - F ) / ( C - B ) ) e. CC ) | 
						
							| 20 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 21 | 20 15 | subcld |  |-  ( ph -> ( A - B ) e. CC ) | 
						
							| 22 | 19 21 | mulcld |  |-  ( ph -> ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) e. CC ) | 
						
							| 23 | 22 12 | addcld |  |-  ( ph -> ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) e. CC ) | 
						
							| 24 | 10 23 16 18 | mulcand |  |-  ( ph -> ( ( ( C - B ) x. E ) = ( ( C - B ) x. ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) <-> E = ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) ) | 
						
							| 25 | 16 22 12 | adddid |  |-  ( ph -> ( ( C - B ) x. ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) = ( ( ( C - B ) x. ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) + ( ( C - B ) x. F ) ) ) | 
						
							| 26 | 13 16 18 | divcan2d |  |-  ( ph -> ( ( C - B ) x. ( ( G - F ) / ( C - B ) ) ) = ( G - F ) ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ph -> ( ( ( C - B ) x. ( ( G - F ) / ( C - B ) ) ) x. ( A - B ) ) = ( ( G - F ) x. ( A - B ) ) ) | 
						
							| 28 | 16 19 21 | mulassd |  |-  ( ph -> ( ( ( C - B ) x. ( ( G - F ) / ( C - B ) ) ) x. ( A - B ) ) = ( ( C - B ) x. ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) ) | 
						
							| 29 | 13 20 15 | subdid |  |-  ( ph -> ( ( G - F ) x. ( A - B ) ) = ( ( ( G - F ) x. A ) - ( ( G - F ) x. B ) ) ) | 
						
							| 30 | 27 28 29 | 3eqtr3d |  |-  ( ph -> ( ( C - B ) x. ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) = ( ( ( G - F ) x. A ) - ( ( G - F ) x. B ) ) ) | 
						
							| 31 | 14 15 12 | subdird |  |-  ( ph -> ( ( C - B ) x. F ) = ( ( C x. F ) - ( B x. F ) ) ) | 
						
							| 32 | 30 31 | oveq12d |  |-  ( ph -> ( ( ( C - B ) x. ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) + ( ( C - B ) x. F ) ) = ( ( ( ( G - F ) x. A ) - ( ( G - F ) x. B ) ) + ( ( C x. F ) - ( B x. F ) ) ) ) | 
						
							| 33 | 13 20 | mulcld |  |-  ( ph -> ( ( G - F ) x. A ) e. CC ) | 
						
							| 34 | 13 15 | mulcld |  |-  ( ph -> ( ( G - F ) x. B ) e. CC ) | 
						
							| 35 | 14 12 | mulcld |  |-  ( ph -> ( C x. F ) e. CC ) | 
						
							| 36 | 15 12 | mulcld |  |-  ( ph -> ( B x. F ) e. CC ) | 
						
							| 37 | 35 36 | subcld |  |-  ( ph -> ( ( C x. F ) - ( B x. F ) ) e. CC ) | 
						
							| 38 | 33 34 37 | subadd23d |  |-  ( ph -> ( ( ( ( G - F ) x. A ) - ( ( G - F ) x. B ) ) + ( ( C x. F ) - ( B x. F ) ) ) = ( ( ( G - F ) x. A ) + ( ( ( C x. F ) - ( B x. F ) ) - ( ( G - F ) x. B ) ) ) ) | 
						
							| 39 | 32 38 | eqtrd |  |-  ( ph -> ( ( ( C - B ) x. ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) + ( ( C - B ) x. F ) ) = ( ( ( G - F ) x. A ) + ( ( ( C x. F ) - ( B x. F ) ) - ( ( G - F ) x. B ) ) ) ) | 
						
							| 40 | 14 12 | mulcomd |  |-  ( ph -> ( C x. F ) = ( F x. C ) ) | 
						
							| 41 | 15 12 | mulcomd |  |-  ( ph -> ( B x. F ) = ( F x. B ) ) | 
						
							| 42 | 40 41 | oveq12d |  |-  ( ph -> ( ( C x. F ) - ( B x. F ) ) = ( ( F x. C ) - ( F x. B ) ) ) | 
						
							| 43 | 11 12 15 | subdird |  |-  ( ph -> ( ( G - F ) x. B ) = ( ( G x. B ) - ( F x. B ) ) ) | 
						
							| 44 | 42 43 | oveq12d |  |-  ( ph -> ( ( ( C x. F ) - ( B x. F ) ) - ( ( G - F ) x. B ) ) = ( ( ( F x. C ) - ( F x. B ) ) - ( ( G x. B ) - ( F x. B ) ) ) ) | 
						
							| 45 | 12 14 | mulcld |  |-  ( ph -> ( F x. C ) e. CC ) | 
						
							| 46 | 11 15 | mulcld |  |-  ( ph -> ( G x. B ) e. CC ) | 
						
							| 47 | 12 15 | mulcld |  |-  ( ph -> ( F x. B ) e. CC ) | 
						
							| 48 | 45 46 47 | nnncan2d |  |-  ( ph -> ( ( ( F x. C ) - ( F x. B ) ) - ( ( G x. B ) - ( F x. B ) ) ) = ( ( F x. C ) - ( G x. B ) ) ) | 
						
							| 49 | 11 15 | mulcomd |  |-  ( ph -> ( G x. B ) = ( B x. G ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ph -> ( ( F x. C ) - ( G x. B ) ) = ( ( F x. C ) - ( B x. G ) ) ) | 
						
							| 51 | 44 48 50 | 3eqtrd |  |-  ( ph -> ( ( ( C x. F ) - ( B x. F ) ) - ( ( G - F ) x. B ) ) = ( ( F x. C ) - ( B x. G ) ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( ph -> ( ( ( G - F ) x. A ) + ( ( ( C x. F ) - ( B x. F ) ) - ( ( G - F ) x. B ) ) ) = ( ( ( G - F ) x. A ) + ( ( F x. C ) - ( B x. G ) ) ) ) | 
						
							| 53 | 25 39 52 | 3eqtrd |  |-  ( ph -> ( ( C - B ) x. ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) = ( ( ( G - F ) x. A ) + ( ( F x. C ) - ( B x. G ) ) ) ) | 
						
							| 54 | 53 | eqeq2d |  |-  ( ph -> ( ( ( C - B ) x. E ) = ( ( C - B ) x. ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) <-> ( ( C - B ) x. E ) = ( ( ( G - F ) x. A ) + ( ( F x. C ) - ( B x. G ) ) ) ) ) | 
						
							| 55 | 9 24 54 | 3bitr2d |  |-  ( ph -> ( E. t e. RR ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) <-> ( ( C - B ) x. E ) = ( ( ( G - F ) x. A ) + ( ( F x. C ) - ( B x. G ) ) ) ) ) |