Step |
Hyp |
Ref |
Expression |
1 |
|
affineid.f |
|- ( ph -> A e. CC ) |
2 |
|
affineid.x |
|- ( ph -> T e. CC ) |
3 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
4 |
3 2 1
|
subdird |
|- ( ph -> ( ( 1 - T ) x. A ) = ( ( 1 x. A ) - ( T x. A ) ) ) |
5 |
1
|
mulid2d |
|- ( ph -> ( 1 x. A ) = A ) |
6 |
5
|
oveq1d |
|- ( ph -> ( ( 1 x. A ) - ( T x. A ) ) = ( A - ( T x. A ) ) ) |
7 |
4 6
|
eqtrd |
|- ( ph -> ( ( 1 - T ) x. A ) = ( A - ( T x. A ) ) ) |
8 |
7
|
oveq1d |
|- ( ph -> ( ( ( 1 - T ) x. A ) + ( T x. A ) ) = ( ( A - ( T x. A ) ) + ( T x. A ) ) ) |
9 |
2 1
|
mulcld |
|- ( ph -> ( T x. A ) e. CC ) |
10 |
1 9
|
npcand |
|- ( ph -> ( ( A - ( T x. A ) ) + ( T x. A ) ) = A ) |
11 |
8 10
|
eqtrd |
|- ( ph -> ( ( ( 1 - T ) x. A ) + ( T x. A ) ) = A ) |