Metamath Proof Explorer


Theorem affineid

Description: Identity of an affine combination. (Contributed by AV, 2-Feb-2023)

Ref Expression
Hypotheses affineid.f
|- ( ph -> A e. CC )
affineid.x
|- ( ph -> T e. CC )
Assertion affineid
|- ( ph -> ( ( ( 1 - T ) x. A ) + ( T x. A ) ) = A )

Proof

Step Hyp Ref Expression
1 affineid.f
 |-  ( ph -> A e. CC )
2 affineid.x
 |-  ( ph -> T e. CC )
3 1cnd
 |-  ( ph -> 1 e. CC )
4 3 2 1 subdird
 |-  ( ph -> ( ( 1 - T ) x. A ) = ( ( 1 x. A ) - ( T x. A ) ) )
5 1 mulid2d
 |-  ( ph -> ( 1 x. A ) = A )
6 5 oveq1d
 |-  ( ph -> ( ( 1 x. A ) - ( T x. A ) ) = ( A - ( T x. A ) ) )
7 4 6 eqtrd
 |-  ( ph -> ( ( 1 - T ) x. A ) = ( A - ( T x. A ) ) )
8 7 oveq1d
 |-  ( ph -> ( ( ( 1 - T ) x. A ) + ( T x. A ) ) = ( ( A - ( T x. A ) ) + ( T x. A ) ) )
9 2 1 mulcld
 |-  ( ph -> ( T x. A ) e. CC )
10 1 9 npcand
 |-  ( ph -> ( ( A - ( T x. A ) ) + ( T x. A ) ) = A )
11 8 10 eqtrd
 |-  ( ph -> ( ( ( 1 - T ) x. A ) + ( T x. A ) ) = A )