Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
|- ( ( A e. CC /\ A =/= 1 ) -> 1 e. CC ) |
2 |
|
simpl |
|- ( ( A e. CC /\ A =/= 1 ) -> A e. CC ) |
3 |
1 2
|
subcld |
|- ( ( A e. CC /\ A =/= 1 ) -> ( 1 - A ) e. CC ) |
4 |
|
simpr |
|- ( ( A e. CC /\ A =/= 1 ) -> A =/= 1 ) |
5 |
4
|
necomd |
|- ( ( A e. CC /\ A =/= 1 ) -> 1 =/= A ) |
6 |
1 2 5
|
subne0d |
|- ( ( A e. CC /\ A =/= 1 ) -> ( 1 - A ) =/= 0 ) |
7 |
1 3 6
|
divcan4d |
|- ( ( A e. CC /\ A =/= 1 ) -> ( ( 1 x. ( 1 - A ) ) / ( 1 - A ) ) = 1 ) |
8 |
7
|
eqcomd |
|- ( ( A e. CC /\ A =/= 1 ) -> 1 = ( ( 1 x. ( 1 - A ) ) / ( 1 - A ) ) ) |
9 |
8
|
oveq1d |
|- ( ( A e. CC /\ A =/= 1 ) -> ( 1 - ( 1 / ( 1 - A ) ) ) = ( ( ( 1 x. ( 1 - A ) ) / ( 1 - A ) ) - ( 1 / ( 1 - A ) ) ) ) |
10 |
1 3
|
mulcld |
|- ( ( A e. CC /\ A =/= 1 ) -> ( 1 x. ( 1 - A ) ) e. CC ) |
11 |
10 1 3 6
|
divsubdird |
|- ( ( A e. CC /\ A =/= 1 ) -> ( ( ( 1 x. ( 1 - A ) ) - 1 ) / ( 1 - A ) ) = ( ( ( 1 x. ( 1 - A ) ) / ( 1 - A ) ) - ( 1 / ( 1 - A ) ) ) ) |
12 |
3
|
mulid2d |
|- ( ( A e. CC /\ A =/= 1 ) -> ( 1 x. ( 1 - A ) ) = ( 1 - A ) ) |
13 |
12
|
oveq1d |
|- ( ( A e. CC /\ A =/= 1 ) -> ( ( 1 x. ( 1 - A ) ) - 1 ) = ( ( 1 - A ) - 1 ) ) |
14 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
15 |
14
|
adantr |
|- ( ( A e. CC /\ A =/= 1 ) -> -u A e. CC ) |
16 |
1 2
|
negsubd |
|- ( ( A e. CC /\ A =/= 1 ) -> ( 1 + -u A ) = ( 1 - A ) ) |
17 |
16
|
eqcomd |
|- ( ( A e. CC /\ A =/= 1 ) -> ( 1 - A ) = ( 1 + -u A ) ) |
18 |
1 15 17
|
mvrladdd |
|- ( ( A e. CC /\ A =/= 1 ) -> ( ( 1 - A ) - 1 ) = -u A ) |
19 |
13 18
|
eqtrd |
|- ( ( A e. CC /\ A =/= 1 ) -> ( ( 1 x. ( 1 - A ) ) - 1 ) = -u A ) |
20 |
19
|
oveq1d |
|- ( ( A e. CC /\ A =/= 1 ) -> ( ( ( 1 x. ( 1 - A ) ) - 1 ) / ( 1 - A ) ) = ( -u A / ( 1 - A ) ) ) |
21 |
2 3 6
|
divneg2d |
|- ( ( A e. CC /\ A =/= 1 ) -> -u ( A / ( 1 - A ) ) = ( A / -u ( 1 - A ) ) ) |
22 |
2 3 6
|
divnegd |
|- ( ( A e. CC /\ A =/= 1 ) -> -u ( A / ( 1 - A ) ) = ( -u A / ( 1 - A ) ) ) |
23 |
1 2
|
negsubdi2d |
|- ( ( A e. CC /\ A =/= 1 ) -> -u ( 1 - A ) = ( A - 1 ) ) |
24 |
23
|
oveq2d |
|- ( ( A e. CC /\ A =/= 1 ) -> ( A / -u ( 1 - A ) ) = ( A / ( A - 1 ) ) ) |
25 |
21 22 24
|
3eqtr3d |
|- ( ( A e. CC /\ A =/= 1 ) -> ( -u A / ( 1 - A ) ) = ( A / ( A - 1 ) ) ) |
26 |
20 25
|
eqtrd |
|- ( ( A e. CC /\ A =/= 1 ) -> ( ( ( 1 x. ( 1 - A ) ) - 1 ) / ( 1 - A ) ) = ( A / ( A - 1 ) ) ) |
27 |
9 11 26
|
3eqtr2d |
|- ( ( A e. CC /\ A =/= 1 ) -> ( 1 - ( 1 / ( 1 - A ) ) ) = ( A / ( A - 1 ) ) ) |