Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
|
2 |
|
simpl |
|
3 |
1 2
|
subcld |
|
4 |
|
simpr |
|
5 |
4
|
necomd |
|
6 |
1 2 5
|
subne0d |
|
7 |
1 3 6
|
divcan4d |
|
8 |
7
|
eqcomd |
|
9 |
8
|
oveq1d |
|
10 |
1 3
|
mulcld |
|
11 |
10 1 3 6
|
divsubdird |
|
12 |
3
|
mulid2d |
|
13 |
12
|
oveq1d |
|
14 |
|
negcl |
|
15 |
14
|
adantr |
|
16 |
1 2
|
negsubd |
|
17 |
16
|
eqcomd |
|
18 |
1 15 17
|
mvrladdd |
|
19 |
13 18
|
eqtrd |
|
20 |
19
|
oveq1d |
|
21 |
2 3 6
|
divneg2d |
|
22 |
2 3 6
|
divnegd |
|
23 |
1 2
|
negsubdi2d |
|
24 |
23
|
oveq2d |
|
25 |
21 22 24
|
3eqtr3d |
|
26 |
20 25
|
eqtrd |
|
27 |
9 11 26
|
3eqtr2d |
|