Metamath Proof Explorer


Theorem divneg2d

Description: Move negative sign inside of a division. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divcld.3 φB0
Assertion divneg2d φAB=AB

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divcld.3 φB0
4 divneg2 ABB0AB=AB
5 1 2 3 4 syl3anc φAB=AB