Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Elementary geometry (extension)
Auxiliary theorems
affineid
Next ⟩
1subrec1sub
Metamath Proof Explorer
Ascii
Unicode
Theorem
affineid
Description:
Identity of an affine combination.
(Contributed by
AV
, 2-Feb-2023)
Ref
Expression
Hypotheses
affineid.f
⊢
φ
→
A
∈
ℂ
affineid.x
⊢
φ
→
T
∈
ℂ
Assertion
affineid
⊢
φ
→
1
−
T
⁢
A
+
T
⁢
A
=
A
Proof
Step
Hyp
Ref
Expression
1
affineid.f
⊢
φ
→
A
∈
ℂ
2
affineid.x
⊢
φ
→
T
∈
ℂ
3
1cnd
⊢
φ
→
1
∈
ℂ
4
3
2
1
subdird
⊢
φ
→
1
−
T
⁢
A
=
1
⁢
A
−
T
⁢
A
5
1
mulid2d
⊢
φ
→
1
⁢
A
=
A
6
5
oveq1d
⊢
φ
→
1
⁢
A
−
T
⁢
A
=
A
−
T
⁢
A
7
4
6
eqtrd
⊢
φ
→
1
−
T
⁢
A
=
A
−
T
⁢
A
8
7
oveq1d
⊢
φ
→
1
−
T
⁢
A
+
T
⁢
A
=
A
-
T
⁢
A
+
T
⁢
A
9
2
1
mulcld
⊢
φ
→
T
⁢
A
∈
ℂ
10
1
9
npcand
⊢
φ
→
A
-
T
⁢
A
+
T
⁢
A
=
A
11
8
10
eqtrd
⊢
φ
→
1
−
T
⁢
A
+
T
⁢
A
=
A