| Step | Hyp | Ref | Expression | 
						
							| 1 |  | affinecomb1.a |  | 
						
							| 2 |  | affinecomb1.b |  | 
						
							| 3 |  | affinecomb1.c |  | 
						
							| 4 |  | affinecomb1.d |  | 
						
							| 5 |  | affinecomb1.e |  | 
						
							| 6 |  | affinecomb1.f |  | 
						
							| 7 |  | affinecomb1.g |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 1 2 3 4 5 6 7 8 | affinecomb1 |  | 
						
							| 10 | 5 | recnd |  | 
						
							| 11 | 7 | recnd |  | 
						
							| 12 | 6 | recnd |  | 
						
							| 13 | 11 12 | subcld |  | 
						
							| 14 | 3 | recnd |  | 
						
							| 15 | 2 | recnd |  | 
						
							| 16 | 14 15 | subcld |  | 
						
							| 17 | 4 | necomd |  | 
						
							| 18 | 14 15 17 | subne0d |  | 
						
							| 19 | 13 16 18 | divcld |  | 
						
							| 20 | 1 | recnd |  | 
						
							| 21 | 20 15 | subcld |  | 
						
							| 22 | 19 21 | mulcld |  | 
						
							| 23 | 22 12 | addcld |  | 
						
							| 24 | 10 23 16 18 | mulcand |  | 
						
							| 25 | 16 22 12 | adddid |  | 
						
							| 26 | 13 16 18 | divcan2d |  | 
						
							| 27 | 26 | oveq1d |  | 
						
							| 28 | 16 19 21 | mulassd |  | 
						
							| 29 | 13 20 15 | subdid |  | 
						
							| 30 | 27 28 29 | 3eqtr3d |  | 
						
							| 31 | 14 15 12 | subdird |  | 
						
							| 32 | 30 31 | oveq12d |  | 
						
							| 33 | 13 20 | mulcld |  | 
						
							| 34 | 13 15 | mulcld |  | 
						
							| 35 | 14 12 | mulcld |  | 
						
							| 36 | 15 12 | mulcld |  | 
						
							| 37 | 35 36 | subcld |  | 
						
							| 38 | 33 34 37 | subadd23d |  | 
						
							| 39 | 32 38 | eqtrd |  | 
						
							| 40 | 14 12 | mulcomd |  | 
						
							| 41 | 15 12 | mulcomd |  | 
						
							| 42 | 40 41 | oveq12d |  | 
						
							| 43 | 11 12 15 | subdird |  | 
						
							| 44 | 42 43 | oveq12d |  | 
						
							| 45 | 12 14 | mulcld |  | 
						
							| 46 | 11 15 | mulcld |  | 
						
							| 47 | 12 15 | mulcld |  | 
						
							| 48 | 45 46 47 | nnncan2d |  | 
						
							| 49 | 11 15 | mulcomd |  | 
						
							| 50 | 49 | oveq2d |  | 
						
							| 51 | 44 48 50 | 3eqtrd |  | 
						
							| 52 | 51 | oveq2d |  | 
						
							| 53 | 25 39 52 | 3eqtrd |  | 
						
							| 54 | 53 | eqeq2d |  | 
						
							| 55 | 9 24 54 | 3bitr2d |  |