Step |
Hyp |
Ref |
Expression |
1 |
|
affinecomb1.a |
|
2 |
|
affinecomb1.b |
|
3 |
|
affinecomb1.c |
|
4 |
|
affinecomb1.d |
|
5 |
|
affinecomb1.e |
|
6 |
|
affinecomb1.f |
|
7 |
|
affinecomb1.g |
|
8 |
|
eqid |
|
9 |
1 2 3 4 5 6 7 8
|
affinecomb1 |
|
10 |
5
|
recnd |
|
11 |
7
|
recnd |
|
12 |
6
|
recnd |
|
13 |
11 12
|
subcld |
|
14 |
3
|
recnd |
|
15 |
2
|
recnd |
|
16 |
14 15
|
subcld |
|
17 |
4
|
necomd |
|
18 |
14 15 17
|
subne0d |
|
19 |
13 16 18
|
divcld |
|
20 |
1
|
recnd |
|
21 |
20 15
|
subcld |
|
22 |
19 21
|
mulcld |
|
23 |
22 12
|
addcld |
|
24 |
10 23 16 18
|
mulcand |
|
25 |
16 22 12
|
adddid |
|
26 |
13 16 18
|
divcan2d |
|
27 |
26
|
oveq1d |
|
28 |
16 19 21
|
mulassd |
|
29 |
13 20 15
|
subdid |
|
30 |
27 28 29
|
3eqtr3d |
|
31 |
14 15 12
|
subdird |
|
32 |
30 31
|
oveq12d |
|
33 |
13 20
|
mulcld |
|
34 |
13 15
|
mulcld |
|
35 |
14 12
|
mulcld |
|
36 |
15 12
|
mulcld |
|
37 |
35 36
|
subcld |
|
38 |
33 34 37
|
subadd23d |
|
39 |
32 38
|
eqtrd |
|
40 |
14 12
|
mulcomd |
|
41 |
15 12
|
mulcomd |
|
42 |
40 41
|
oveq12d |
|
43 |
11 12 15
|
subdird |
|
44 |
42 43
|
oveq12d |
|
45 |
12 14
|
mulcld |
|
46 |
11 15
|
mulcld |
|
47 |
12 15
|
mulcld |
|
48 |
45 46 47
|
nnncan2d |
|
49 |
11 15
|
mulcomd |
|
50 |
49
|
oveq2d |
|
51 |
44 48 50
|
3eqtrd |
|
52 |
51
|
oveq2d |
|
53 |
25 39 52
|
3eqtrd |
|
54 |
53
|
eqeq2d |
|
55 |
9 24 54
|
3bitr2d |
|