Metamath Proof Explorer


Theorem affinecomb1

Description: Combination of two real affine combinations, one class variable resolved. (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses affinecomb1.a φ A
affinecomb1.b φ B
affinecomb1.c φ C
affinecomb1.d φ B C
affinecomb1.e φ E
affinecomb1.f φ F
affinecomb1.g φ G
affinecomb1.s S = G F C B
Assertion affinecomb1 φ t A = 1 t B + t C E = 1 t F + t G E = S A B + F

Proof

Step Hyp Ref Expression
1 affinecomb1.a φ A
2 affinecomb1.b φ B
3 affinecomb1.c φ C
4 affinecomb1.d φ B C
5 affinecomb1.e φ E
6 affinecomb1.f φ F
7 affinecomb1.g φ G
8 affinecomb1.s S = G F C B
9 1 adantr φ t A
10 9 recnd φ t A
11 2 adantr φ t B
12 11 recnd φ t B
13 3 adantr φ t C
14 13 recnd φ t C
15 simpr φ t t
16 15 recnd φ t t
17 4 adantr φ t B C
18 10 12 14 16 17 affineequivne φ t A = 1 t B + t C t = A B C B
19 oveq2 t = A B C B 1 t = 1 A B C B
20 19 oveq1d t = A B C B 1 t F = 1 A B C B F
21 oveq1 t = A B C B t G = A B C B G
22 20 21 oveq12d t = A B C B 1 t F + t G = 1 A B C B F + A B C B G
23 22 eqeq2d t = A B C B E = 1 t F + t G E = 1 A B C B F + A B C B G
24 23 adantl φ t t = A B C B E = 1 t F + t G E = 1 A B C B F + A B C B G
25 eqidd φ A B C B G F + F = A B C B G F + F
26 1 2 resubcld φ A B
27 3 2 resubcld φ C B
28 3 recnd φ C
29 2 recnd φ B
30 4 necomd φ C B
31 28 29 30 subne0d φ C B 0
32 26 27 31 redivcld φ A B C B
33 7 6 resubcld φ G F
34 32 33 remulcld φ A B C B G F
35 34 6 readdcld φ A B C B G F + F
36 35 recnd φ A B C B G F + F
37 6 recnd φ F
38 7 recnd φ G
39 32 recnd φ A B C B
40 36 37 38 39 affineequiv4 φ A B C B G F + F = 1 A B C B F + A B C B G A B C B G F + F = A B C B G F + F
41 25 40 mpbird φ A B C B G F + F = 1 A B C B F + A B C B G
42 26 recnd φ A B
43 27 recnd φ C B
44 33 recnd φ G F
45 42 43 44 31 div13d φ A B C B G F = G F C B A B
46 8 oveq1i S A B = G F C B A B
47 45 46 eqtr4di φ A B C B G F = S A B
48 47 oveq1d φ A B C B G F + F = S A B + F
49 41 48 eqtr3d φ 1 A B C B F + A B C B G = S A B + F
50 49 adantr φ t 1 A B C B F + A B C B G = S A B + F
51 50 eqeq2d φ t E = 1 A B C B F + A B C B G E = S A B + F
52 51 biimpd φ t E = 1 A B C B F + A B C B G E = S A B + F
53 52 adantr φ t t = A B C B E = 1 A B C B F + A B C B G E = S A B + F
54 24 53 sylbid φ t t = A B C B E = 1 t F + t G E = S A B + F
55 54 ex φ t t = A B C B E = 1 t F + t G E = S A B + F
56 18 55 sylbid φ t A = 1 t B + t C E = 1 t F + t G E = S A B + F
57 56 impd φ t A = 1 t B + t C E = 1 t F + t G E = S A B + F
58 57 rexlimdva φ t A = 1 t B + t C E = 1 t F + t G E = S A B + F
59 5 adantr φ t = A B C B E
60 59 recnd φ t = A B C B E
61 37 adantr φ t = A B C B F
62 38 adantr φ t = A B C B G
63 32 adantr φ t = A B C B A B C B
64 eleq1 t = A B C B t A B C B
65 64 adantl φ t = A B C B t A B C B
66 63 65 mpbird φ t = A B C B t
67 66 recnd φ t = A B C B t
68 60 61 62 67 affineequiv4 φ t = A B C B E = 1 t F + t G E = t G F + F
69 19 oveq1d t = A B C B 1 t B = 1 A B C B B
70 oveq1 t = A B C B t C = A B C B C
71 69 70 oveq12d t = A B C B 1 t B + t C = 1 A B C B B + A B C B C
72 eqidd φ A B C B = A B C B
73 1 recnd φ A
74 73 29 28 39 4 affineequivne φ A = 1 A B C B B + A B C B C A B C B = A B C B
75 72 74 mpbird φ A = 1 A B C B B + A B C B C
76 75 eqcomd φ 1 A B C B B + A B C B C = A
77 71 76 sylan9eqr φ t = A B C B 1 t B + t C = A
78 77 eqcomd φ t = A B C B A = 1 t B + t C
79 78 biantrurd φ t = A B C B E = 1 t F + t G A = 1 t B + t C E = 1 t F + t G
80 45 adantr φ t = A B C B A B C B G F = G F C B A B
81 oveq1 t = A B C B t G F = A B C B G F
82 81 adantl φ t = A B C B t G F = A B C B G F
83 46 a1i φ t = A B C B S A B = G F C B A B
84 80 82 83 3eqtr4d φ t = A B C B t G F = S A B
85 84 oveq1d φ t = A B C B t G F + F = S A B + F
86 85 eqeq2d φ t = A B C B E = t G F + F E = S A B + F
87 68 79 86 3bitr3d φ t = A B C B A = 1 t B + t C E = 1 t F + t G E = S A B + F
88 32 87 rspcedv φ E = S A B + F t A = 1 t B + t C E = 1 t F + t G
89 58 88 impbid φ t A = 1 t B + t C E = 1 t F + t G E = S A B + F