Metamath Proof Explorer


Theorem affinecomb1

Description: Combination of two real affine combinations, one class variable resolved. (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses affinecomb1.a φA
affinecomb1.b φB
affinecomb1.c φC
affinecomb1.d φBC
affinecomb1.e φE
affinecomb1.f φF
affinecomb1.g φG
affinecomb1.s S=GFCB
Assertion affinecomb1 φtA=1tB+tCE=1tF+tGE=SAB+F

Proof

Step Hyp Ref Expression
1 affinecomb1.a φA
2 affinecomb1.b φB
3 affinecomb1.c φC
4 affinecomb1.d φBC
5 affinecomb1.e φE
6 affinecomb1.f φF
7 affinecomb1.g φG
8 affinecomb1.s S=GFCB
9 1 adantr φtA
10 9 recnd φtA
11 2 adantr φtB
12 11 recnd φtB
13 3 adantr φtC
14 13 recnd φtC
15 simpr φtt
16 15 recnd φtt
17 4 adantr φtBC
18 10 12 14 16 17 affineequivne φtA=1tB+tCt=ABCB
19 oveq2 t=ABCB1t=1ABCB
20 19 oveq1d t=ABCB1tF=1ABCBF
21 oveq1 t=ABCBtG=ABCBG
22 20 21 oveq12d t=ABCB1tF+tG=1ABCBF+ABCBG
23 22 eqeq2d t=ABCBE=1tF+tGE=1ABCBF+ABCBG
24 23 adantl φtt=ABCBE=1tF+tGE=1ABCBF+ABCBG
25 eqidd φABCBGF+F=ABCBGF+F
26 1 2 resubcld φAB
27 3 2 resubcld φCB
28 3 recnd φC
29 2 recnd φB
30 4 necomd φCB
31 28 29 30 subne0d φCB0
32 26 27 31 redivcld φABCB
33 7 6 resubcld φGF
34 32 33 remulcld φABCBGF
35 34 6 readdcld φABCBGF+F
36 35 recnd φABCBGF+F
37 6 recnd φF
38 7 recnd φG
39 32 recnd φABCB
40 36 37 38 39 affineequiv4 φABCBGF+F=1ABCBF+ABCBGABCBGF+F=ABCBGF+F
41 25 40 mpbird φABCBGF+F=1ABCBF+ABCBG
42 26 recnd φAB
43 27 recnd φCB
44 33 recnd φGF
45 42 43 44 31 div13d φABCBGF=GFCBAB
46 8 oveq1i SAB=GFCBAB
47 45 46 eqtr4di φABCBGF=SAB
48 47 oveq1d φABCBGF+F=SAB+F
49 41 48 eqtr3d φ1ABCBF+ABCBG=SAB+F
50 49 adantr φt1ABCBF+ABCBG=SAB+F
51 50 eqeq2d φtE=1ABCBF+ABCBGE=SAB+F
52 51 biimpd φtE=1ABCBF+ABCBGE=SAB+F
53 52 adantr φtt=ABCBE=1ABCBF+ABCBGE=SAB+F
54 24 53 sylbid φtt=ABCBE=1tF+tGE=SAB+F
55 54 ex φtt=ABCBE=1tF+tGE=SAB+F
56 18 55 sylbid φtA=1tB+tCE=1tF+tGE=SAB+F
57 56 impd φtA=1tB+tCE=1tF+tGE=SAB+F
58 57 rexlimdva φtA=1tB+tCE=1tF+tGE=SAB+F
59 5 adantr φt=ABCBE
60 59 recnd φt=ABCBE
61 37 adantr φt=ABCBF
62 38 adantr φt=ABCBG
63 32 adantr φt=ABCBABCB
64 eleq1 t=ABCBtABCB
65 64 adantl φt=ABCBtABCB
66 63 65 mpbird φt=ABCBt
67 66 recnd φt=ABCBt
68 60 61 62 67 affineequiv4 φt=ABCBE=1tF+tGE=tGF+F
69 19 oveq1d t=ABCB1tB=1ABCBB
70 oveq1 t=ABCBtC=ABCBC
71 69 70 oveq12d t=ABCB1tB+tC=1ABCBB+ABCBC
72 eqidd φABCB=ABCB
73 1 recnd φA
74 73 29 28 39 4 affineequivne φA=1ABCBB+ABCBCABCB=ABCB
75 72 74 mpbird φA=1ABCBB+ABCBC
76 75 eqcomd φ1ABCBB+ABCBC=A
77 71 76 sylan9eqr φt=ABCB1tB+tC=A
78 77 eqcomd φt=ABCBA=1tB+tC
79 78 biantrurd φt=ABCBE=1tF+tGA=1tB+tCE=1tF+tG
80 45 adantr φt=ABCBABCBGF=GFCBAB
81 oveq1 t=ABCBtGF=ABCBGF
82 81 adantl φt=ABCBtGF=ABCBGF
83 46 a1i φt=ABCBSAB=GFCBAB
84 80 82 83 3eqtr4d φt=ABCBtGF=SAB
85 84 oveq1d φt=ABCBtGF+F=SAB+F
86 85 eqeq2d φt=ABCBE=tGF+FE=SAB+F
87 68 79 86 3bitr3d φt=ABCBA=1tB+tCE=1tF+tGE=SAB+F
88 32 87 rspcedv φE=SAB+FtA=1tB+tCE=1tF+tG
89 58 88 impbid φtA=1tB+tCE=1tF+tGE=SAB+F