Step |
Hyp |
Ref |
Expression |
1 |
|
affinecomb1.a |
|
2 |
|
affinecomb1.b |
|
3 |
|
affinecomb1.c |
|
4 |
|
affinecomb1.d |
|
5 |
|
affinecomb1.e |
|
6 |
|
affinecomb1.f |
|
7 |
|
affinecomb1.g |
|
8 |
|
affinecomb1.s |
|
9 |
1
|
adantr |
|
10 |
9
|
recnd |
|
11 |
2
|
adantr |
|
12 |
11
|
recnd |
|
13 |
3
|
adantr |
|
14 |
13
|
recnd |
|
15 |
|
simpr |
|
16 |
15
|
recnd |
|
17 |
4
|
adantr |
|
18 |
10 12 14 16 17
|
affineequivne |
|
19 |
|
oveq2 |
|
20 |
19
|
oveq1d |
|
21 |
|
oveq1 |
|
22 |
20 21
|
oveq12d |
|
23 |
22
|
eqeq2d |
|
24 |
23
|
adantl |
|
25 |
|
eqidd |
|
26 |
1 2
|
resubcld |
|
27 |
3 2
|
resubcld |
|
28 |
3
|
recnd |
|
29 |
2
|
recnd |
|
30 |
4
|
necomd |
|
31 |
28 29 30
|
subne0d |
|
32 |
26 27 31
|
redivcld |
|
33 |
7 6
|
resubcld |
|
34 |
32 33
|
remulcld |
|
35 |
34 6
|
readdcld |
|
36 |
35
|
recnd |
|
37 |
6
|
recnd |
|
38 |
7
|
recnd |
|
39 |
32
|
recnd |
|
40 |
36 37 38 39
|
affineequiv4 |
|
41 |
25 40
|
mpbird |
|
42 |
26
|
recnd |
|
43 |
27
|
recnd |
|
44 |
33
|
recnd |
|
45 |
42 43 44 31
|
div13d |
|
46 |
8
|
oveq1i |
|
47 |
45 46
|
eqtr4di |
|
48 |
47
|
oveq1d |
|
49 |
41 48
|
eqtr3d |
|
50 |
49
|
adantr |
|
51 |
50
|
eqeq2d |
|
52 |
51
|
biimpd |
|
53 |
52
|
adantr |
|
54 |
24 53
|
sylbid |
|
55 |
54
|
ex |
|
56 |
18 55
|
sylbid |
|
57 |
56
|
impd |
|
58 |
57
|
rexlimdva |
|
59 |
5
|
adantr |
|
60 |
59
|
recnd |
|
61 |
37
|
adantr |
|
62 |
38
|
adantr |
|
63 |
32
|
adantr |
|
64 |
|
eleq1 |
|
65 |
64
|
adantl |
|
66 |
63 65
|
mpbird |
|
67 |
66
|
recnd |
|
68 |
60 61 62 67
|
affineequiv4 |
|
69 |
19
|
oveq1d |
|
70 |
|
oveq1 |
|
71 |
69 70
|
oveq12d |
|
72 |
|
eqidd |
|
73 |
1
|
recnd |
|
74 |
73 29 28 39 4
|
affineequivne |
|
75 |
72 74
|
mpbird |
|
76 |
75
|
eqcomd |
|
77 |
71 76
|
sylan9eqr |
|
78 |
77
|
eqcomd |
|
79 |
78
|
biantrurd |
|
80 |
45
|
adantr |
|
81 |
|
oveq1 |
|
82 |
81
|
adantl |
|
83 |
46
|
a1i |
|
84 |
80 82 83
|
3eqtr4d |
|
85 |
84
|
oveq1d |
|
86 |
85
|
eqeq2d |
|
87 |
68 79 86
|
3bitr3d |
|
88 |
32 87
|
rspcedv |
|
89 |
58 88
|
impbid |
|