Metamath Proof Explorer


Theorem fvbigcup

Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis fvbigcup.1 A V
Assertion fvbigcup 𝖡𝗂𝗀𝖼𝗎𝗉 A = A

Proof

Step Hyp Ref Expression
1 fvbigcup.1 A V
2 eqid A = A
3 1 uniex A V
4 3 brbigcup A 𝖡𝗂𝗀𝖼𝗎𝗉 A A = A
5 2 4 mpbir A 𝖡𝗂𝗀𝖼𝗎𝗉 A
6 fnbigcup 𝖡𝗂𝗀𝖼𝗎𝗉 Fn V
7 fnbrfvb 𝖡𝗂𝗀𝖼𝗎𝗉 Fn V A V 𝖡𝗂𝗀𝖼𝗎𝗉 A = A A 𝖡𝗂𝗀𝖼𝗎𝗉 A
8 6 1 7 mp2an 𝖡𝗂𝗀𝖼𝗎𝗉 A = A A 𝖡𝗂𝗀𝖼𝗎𝗉 A
9 5 8 mpbir 𝖡𝗂𝗀𝖼𝗎𝗉 A = A