Metamath Proof Explorer


Theorem fvbigcup

Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis fvbigcup.1 𝐴 ∈ V
Assertion fvbigcup ( Bigcup 𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 fvbigcup.1 𝐴 ∈ V
2 eqid 𝐴 = 𝐴
3 1 uniex 𝐴 ∈ V
4 3 brbigcup ( 𝐴 Bigcup 𝐴 𝐴 = 𝐴 )
5 2 4 mpbir 𝐴 Bigcup 𝐴
6 fnbigcup Bigcup Fn V
7 fnbrfvb ( ( Bigcup Fn V ∧ 𝐴 ∈ V ) → ( ( Bigcup 𝐴 ) = 𝐴𝐴 Bigcup 𝐴 ) )
8 6 1 7 mp2an ( ( Bigcup 𝐴 ) = 𝐴𝐴 Bigcup 𝐴 )
9 5 8 mpbir ( Bigcup 𝐴 ) = 𝐴