Metamath Proof Explorer
Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012)
|
|
Ref |
Expression |
|
Hypothesis |
fvbigcup.1 |
⊢ 𝐴 ∈ V |
|
Assertion |
fvbigcup |
⊢ ( Bigcup ‘ 𝐴 ) = ∪ 𝐴 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvbigcup.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
| 3 |
1
|
uniex |
⊢ ∪ 𝐴 ∈ V |
| 4 |
3
|
brbigcup |
⊢ ( 𝐴 Bigcup ∪ 𝐴 ↔ ∪ 𝐴 = ∪ 𝐴 ) |
| 5 |
2 4
|
mpbir |
⊢ 𝐴 Bigcup ∪ 𝐴 |
| 6 |
|
fnbigcup |
⊢ Bigcup Fn V |
| 7 |
|
fnbrfvb |
⊢ ( ( Bigcup Fn V ∧ 𝐴 ∈ V ) → ( ( Bigcup ‘ 𝐴 ) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴 ) ) |
| 8 |
6 1 7
|
mp2an |
⊢ ( ( Bigcup ‘ 𝐴 ) = ∪ 𝐴 ↔ 𝐴 Bigcup ∪ 𝐴 ) |
| 9 |
5 8
|
mpbir |
⊢ ( Bigcup ‘ 𝐴 ) = ∪ 𝐴 |