Metamath Proof Explorer


Theorem fvbigcup

Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis fvbigcup.1
|- A e. _V
Assertion fvbigcup
|- ( Bigcup ` A ) = U. A

Proof

Step Hyp Ref Expression
1 fvbigcup.1
 |-  A e. _V
2 eqid
 |-  U. A = U. A
3 1 uniex
 |-  U. A e. _V
4 3 brbigcup
 |-  ( A Bigcup U. A <-> U. A = U. A )
5 2 4 mpbir
 |-  A Bigcup U. A
6 fnbigcup
 |-  Bigcup Fn _V
7 fnbrfvb
 |-  ( ( Bigcup Fn _V /\ A e. _V ) -> ( ( Bigcup ` A ) = U. A <-> A Bigcup U. A ) )
8 6 1 7 mp2an
 |-  ( ( Bigcup ` A ) = U. A <-> A Bigcup U. A )
9 5 8 mpbir
 |-  ( Bigcup ` A ) = U. A