Description: For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fvbigcup.1 | |- A e. _V |
|
Assertion | fvbigcup | |- ( Bigcup ` A ) = U. A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvbigcup.1 | |- A e. _V |
|
2 | eqid | |- U. A = U. A |
|
3 | 1 | uniex | |- U. A e. _V |
4 | 3 | brbigcup | |- ( A Bigcup U. A <-> U. A = U. A ) |
5 | 2 4 | mpbir | |- A Bigcup U. A |
6 | fnbigcup | |- Bigcup Fn _V |
|
7 | fnbrfvb | |- ( ( Bigcup Fn _V /\ A e. _V ) -> ( ( Bigcup ` A ) = U. A <-> A Bigcup U. A ) ) |
|
8 | 6 1 7 | mp2an | |- ( ( Bigcup ` A ) = U. A <-> A Bigcup U. A ) |
9 | 5 8 | mpbir | |- ( Bigcup ` A ) = U. A |