Metamath Proof Explorer


Theorem fvimage

Description: Value of the image functor. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fvimage A V R A W 𝖨𝗆𝖺𝗀𝖾 R A = R A

Proof

Step Hyp Ref Expression
1 elex A V A V
2 imaeq2 x = A R x = R A
3 imageval 𝖨𝗆𝖺𝗀𝖾 R = x V R x
4 2 3 fvmptg A V R A W 𝖨𝗆𝖺𝗀𝖾 R A = R A
5 1 4 sylan A V R A W 𝖨𝗆𝖺𝗀𝖾 R A = R A