Metamath Proof Explorer


Theorem fviunfun

Description: The function value of an indexed union is the value of one of the indexed functions. (Contributed by AV, 4-Nov-2023)

Ref Expression
Hypothesis fviunfun.u U=iIFi
Assertion fviunfun FunUJIXdomFJUX=FJX

Proof

Step Hyp Ref Expression
1 fviunfun.u U=iIFi
2 fveq2 i=JFi=FJ
3 2 ssiun2s JIFJiIFi
4 3 1 sseqtrrdi JIFJU
5 funssfv FunUFJUXdomFJUX=FJX
6 4 5 syl3an2 FunUJIXdomFJUX=FJX