Metamath Proof Explorer


Theorem fvmpt4d

Description: Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses fvmpt4d.1 _xA
fvmpt4d.2 φBC
fvmpt4d.3 φxA
Assertion fvmpt4d φxABx=B

Proof

Step Hyp Ref Expression
1 fvmpt4d.1 _xA
2 fvmpt4d.2 φBC
3 fvmpt4d.3 φxA
4 1 fvmpt2f xABCxABx=B
5 3 2 4 syl2anc φxABx=B