Metamath Proof Explorer


Theorem fvmptd3

Description: Deduction version of fvmpt . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fvmptd3.1 F=xDB
fvmptd3.2 x=AB=C
fvmptd3.3 φAD
fvmptd3.4 φCV
Assertion fvmptd3 φFA=C

Proof

Step Hyp Ref Expression
1 fvmptd3.1 F=xDB
2 fvmptd3.2 x=AB=C
3 fvmptd3.3 φAD
4 fvmptd3.4 φCV
5 2 1 fvmptg ADCVFA=C
6 3 4 5 syl2anc φFA=C