Metamath Proof Explorer


Theorem fvmptmap

Description: Special case of fvmpt for operator theorems. (Contributed by NM, 27-Nov-2007)

Ref Expression
Hypotheses fvmptmap.1 CV
fvmptmap.2 DV
fvmptmap.3 RV
fvmptmap.4 x=AB=C
fvmptmap.5 F=xRDB
Assertion fvmptmap A:DRFA=C

Proof

Step Hyp Ref Expression
1 fvmptmap.1 CV
2 fvmptmap.2 DV
3 fvmptmap.3 RV
4 fvmptmap.4 x=AB=C
5 fvmptmap.5 F=xRDB
6 3 2 elmap ARDA:DR
7 4 5 1 fvmpt ARDFA=C
8 6 7 sylbir A:DRFA=C